logo

High electro-catalytic graphite felt/MnO2 composite electrodes for vanadium redox flow batteries

More info
  • ReceivedDec 18, 2017
  • AcceptedMar 5, 2018
  • PublishedApr 24, 2018

Abstract


Funded by

the Ministry of Science and Technology of China(2016YFA0202500)

the National Natural Science Foundation of China(51772093)

and the National Key Research and Development Program of China(2017YFD0301507)


Acknowledgment

This work was supported by the Ministry of Science and Technology of China (2016YFA0202500), the National Natural Science Foundation of China (51772093), the National key Research and Development Program of China (2017YFD0301507).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Liu J, Zhang JG, Yang Z, Lemmon JP, Imhoff C, Graff GL, Li L, Hu J, Wang C, Xiao J, Xia G, Viswanathan VV, Baskaran S, Sprenkle V, Li X, Shao Y, Schwenzer B. Adv Funct Mater, 2013, 23: 929-946 CrossRef Google Scholar

[2] Sun YZ, Huang JQ, Zhao CZ, Zhang Q. Sci China Chem, 2017, 60: 1508-1526 CrossRef Google Scholar

[3] Zhang XD, Shi JL, Liang JY, Yin YX, Guo YG, Wan LJ. Sci China Chem, 2017, 60: 1554-1560 CrossRef Google Scholar

[4] Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M. Energy Environ Sci, 2016, 9: 102-106 CrossRef Google Scholar

[5] Pang WL, Zhang XH, Guo JZ, Li JY, Yan X, Hou BH, Guan HY, Wu XL. J Power Sources, 2017, 356: 80-88 CrossRef ADS Google Scholar

[6] Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W. Chem Soc Rev, 2017, 46: 6816-6854 CrossRef PubMed Google Scholar

[7] Zhang J, Yuan T, Wan H, Qian J, Ai X, Yang H, Cao Y. Sci China Chem, 2017, 60: 1546-1553 CrossRef Google Scholar

[8] Zeng YK, Zhao TS, An L, Zhou XL, Wei L. J Power Sources, 2015, 300: 438-443 CrossRef ADS Google Scholar

[9] Pezeshki AM, Sacci RL, Veith GM, Zawodzinski TA, Mench MM. J Electrochem Soc, 2016, 163: A5202-A5210 CrossRef Google Scholar

[10] Houser J, Clement J, Pezeshki A, Mench MM. J Power Sources, 2016, 302: 369-377 CrossRef ADS Google Scholar

[11] Oh K, Won S, Ju H. Electrochim Acta, 2015, 181: 238-247 CrossRef Google Scholar

[12] Wang W, Luo Q, Li B, Wei X, Li L, Yang Z. Adv Funct Mater, 2013, 23: 970-986 CrossRef Google Scholar

[13] Yao C, Zhang H, Liu T, Li X, Liu Z. J Power Sources, 2012, 218: 455-461 CrossRef ADS Google Scholar

[14] Deng Q, Huang P, Zhou WX, Ma Q, Zhou N, Xie H, Ling W, Zhou CJ, Yin YX, Wu XW, Lu XY, Guo YG. Adv Energy Mater, 2017, 7: 1700461 CrossRef Google Scholar

[15] Liu Z, Li R, Chen J, Wu X, Zhang K, Mo J, Yuan X, Jiang H, Holze R, Wu Y. ChemElectroChem, 2017, 4: 2184-2189 CrossRef Google Scholar

[16] Sun CN, Delnick FM, Aaron DS, Papandrew AB, Mench MM, Zawodzinski TA. ECS Electrochem Lett, 2013, 2: A43-A45 CrossRef Google Scholar

[17] Cao J, Zhang H, Xu W, Li X. J Power Sources, 2014, 249: 84-91 CrossRef ADS Google Scholar

[18] Ulaganathan M, Jain A, Aravindan V, Jayaraman S, Ling WC, Lim TM, Srinivasan MP, Yan Q, Madhavi S. J Power Sources, 2015, 274: 846-850 CrossRef ADS Google Scholar

[19] Park M, Ryu J, Kim Y, Cho J. Energy Environ Sci, 2014, 7: 3727-3735 CrossRef Google Scholar

[20] Liu J, Wang ZA, Wu XW, Yuan XH, Hu JP, Zhou QM, Liu ZH, Wu YP. J Power Sources, 2015, 299: 301-308 CrossRef ADS Google Scholar

[21] Zhang Y, Qian G, Huang C, Wang Y. J Power Sources, 2016, 324: 528-537 CrossRef ADS Google Scholar

[22] Fetyan A, Derr I, Kayarkatte MK, Langner J, Bernsmeier D, Kraehnert R, Roth C. ChemElectroChem, 2015, 2: 2055-2060 CrossRef Google Scholar

[23] Cho YI, Park SJ, Hwang HJ, Lee JG, Jeon YK, Chu YH, Shul Y. ChemElectroChem, 2015, 2: 872-876 CrossRef Google Scholar

[24] Han P, Wang H, Liu Z, Chen X, Ma W, Yao J, Zhu Y, Cui G. Carbon, 2011, 49: 693-700 CrossRef Google Scholar

[25] Ryu J, Park M, Cho J. J Electrochem Soc, 2016, 163: A5144-A5149 CrossRef Google Scholar

[26] Wu X, Xu H, Xu P, Shen Y, Lu L, Shi J, Fu J, Zhao H. J Power Sources, 2014, 263: 104-109 CrossRef ADS Google Scholar

[27] Wang WH, Wang XD. Electrochim Acta, 2007, 52: 6755-6762 CrossRef Google Scholar

[28] Flox C, Rubio-Garcia J, Nafria R, Zamani R, Skoumal M, Andreu T, Arbiol J, Cabot A, Morante JR. Carbon, 2012, 50: 2372-2374 CrossRef Google Scholar

[29] Li B, Gu M, Nie Z, Wei X, Wang C, Sprenkle V, Wang W. Nano Lett, 2014, 14: 158-165 CrossRef PubMed ADS Google Scholar

[30] Zhou H, Shen Y, Xi J, Qiu X, Chen L. ACS Appl Mater Interfaces, 2016, 8: 15369-15378 CrossRef Google Scholar

[31] Wu H, Shi L, Lei J, Liu D, Qu D, Xie Z, Du X, Yang P, Hu X, Li J, Tang H. J Power Sources, 2016, 323: 90-96 CrossRef ADS Google Scholar

[32] Wang S, Zhao X, Cochell T, Manthiram A. J Phys Chem Lett, 2012, 3: 2164-2167 CrossRef PubMed Google Scholar

[33] Wu L, Shen Y, Yu L, Xi J, Qiu X. Nano Energy, 2016, 28: 19-28 CrossRef Google Scholar

[34] Park M, Jeon IY, Ryu J, Baek JB, Cho J. Adv Energy Mater, 2015, 5: 1401550 CrossRef Google Scholar

[35] Kim KJ, Park MS, Kim YJ, Kim JH, Dou SX, Skyllas-Kazacos M. J Mater Chem A, 2015, 3: 16913-16933 CrossRef Google Scholar

[36] Li W, Liu J, Yan C. Carbon, 2011, 49: 3463-3470 CrossRef Google Scholar

[37] Han P, Yue Y, Liu Z, Xu W, Zhang L, Xu H, Dong S, Cui G. Energy Environ Sci, 2011, 4: 4710-4717 CrossRef Google Scholar

[38] Han P, Wang X, Zhang L, Wang T, Yao J, Huang C, Gu L, Cui G. RSC Adv, 2014, 4: 20379-20381 CrossRef Google Scholar

[39] Park M, Jung Y, Kim J, Lee H, Cho J. Nano Lett, 2013, 13: 4833-4839 CrossRef PubMed ADS Google Scholar

[40] Jin J, Fu X, Liu Q, Liu Y, Wei Z, Niu K, Zhang J. ACS Nano, 2013, 7: 4764-4773 CrossRef PubMed Google Scholar

[41] Dong X, Wang X, Wang J, Song H, Li X, Wang L, Chan-Park MB, Li CM, Chen P. Carbon, 2012, 50: 4865-4870 CrossRef Google Scholar

[42] Kim KJ, Park MS, Kim JH, Hwang U, Lee NJ, Jeong G, Kim YJ. Chem Commun, 2012, 48: 5455-5457 CrossRef PubMed Google Scholar

[43] Ejigu A, Edwards M, Walsh DA. ACS Catal, 2015, 5: 7122-7130 CrossRef Google Scholar

[44] He Z, Dai L, Liu S, Wang L, Li C. Electrochim Acta, 2015, 176: 1434-1440 CrossRef Google Scholar

[45] Jolivet JP, Cassaignon S, Chanéac C, Chiche D, Durupthy O, Portehault D. Compt Rendus Chim, 2010, 13: 40-51 CrossRef Google Scholar

[46] He Y, Du S, Li H, Cheng Q, Pavlinek V, Saha P. J Solid State Electrochem, 2016, 20: 1459-1467 CrossRef Google Scholar

[47] Gao C, Wang NF, Peng S, Liu SQ, Lei Y, Liang XX, Zeng SS, Zi HF. Electrochim Acta, 2013, 88: 193-202 CrossRef Google Scholar

[48] Kim KJ, Lee SW, Yim T, Kim JG, Choi JW, Kim JH, Park MS, Kim YJ. Sci Rep, 2014, 4: 6906 CrossRef PubMed ADS Google Scholar

  • Figure 1

    SEM images of (a, d) GF, (b, e) GF-MNO-0 and (c, f) GF-MNO-2.

  • Figure 2

    (a) SEM images of GF-MNO-2 and corresponding elemental mapping of (b) C, (c) Mn, and (d) O (color online).

  • Figure 3

    (a) Raman spectra of GF, GF-MNO-0, and GF-MNO-2; XPS survey (b), Mn 2p (c), and O 1s spectra (d); (e) TGA curves for the GF, GF-MNO-0 and GF-MNO-2 electrode materials at a heating rate of 10 °C min−1 in air; and (f) sketch map of GF-MNO-2 (color online).

  • Figure 4

    (a) Rate performance of GF and GF-MNO-2, (b) voltage profiles of the GF and GF-MNO-2 electrodes at a current density of 150 mA cm−2, (c) voltage efficiency and coulombic efficiency of GF and GF-MNO-2 at various current densities, and (d) energy efficiency of GF and GF-MNO-2 at different current densities (color online).

  • Figure 5

    (a) Comparison of cyclic voltammograms of GF and GF-MNOs obtained at a scan rate of 10 mV s−1, (b) EIS plots of the GF and GF-MNO electrodes, and (c) energy efficiency at a current density of 150 mA cm−2 after 120 cycles (color online).

  • Table 1   Cyclic voltammograms of GF and GF-MNOs

    Electrodes

    Oxidation peak potential (mV)

    Reduction peak potential(mV)

    E (mV)

    Ipa:Ipc

    GF

    1175

    694

    481

    1.304

    GF-MNO-0

    1137

    689

    448

    1.133

    GF-MNO-2

    1074

    747

    327

    0.986