SCIENCE CHINA Chemistry, Volume 61 , Issue 9 : 1151-1158(2018) https://doi.org/10.1007/s11426-018-9278-5

FeP nanoparticles derived from metal-organic frameworks/GO as high-performance anode material for lithium ion batteries

More info
  • ReceivedMar 20, 2018
  • AcceptedMay 14, 2018
  • PublishedAug 3, 2018


Funded by

the National Key R&D Program of China(2016YFB0100305)

the National Natural Science Foundation of China(51622210)

and the Fundamental Research Funds for the Central Universities(WK3430000004)


This work was supported by the National Key R&D Program of China (2016YFB0100305), the National Natural Science Foundation of China (51622210), and the Fundamental Research Funds for the Central Universities (WK3430000004).

Interest statement

The authors declare that they have no conflict of interest.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Ohzuku T, Makimura Y. Chem Lett, 2001, 30: 642-643 CrossRef Google Scholar

[2] Xu K. Chem Rev, 2004, 104: 4303-4418 CrossRef Google Scholar

[3] Derrien G, Hassoun J, Panero S, Scrosati B. Adv Mater, 2007, 19: 2336-2340 CrossRef Google Scholar

[4] Liu C, Li F, Ma LP, Cheng HM. Adv Mater, 2010, 22: E28-E62 CrossRef PubMed Google Scholar

[5] Guo YG, Chen J. Sci China Chem, 2017, 60: 1-2 CrossRef PubMed Google Scholar

[6] Shin HC, Liu M. Adv Funct Mater, 2005, 15: 582-586 CrossRef Google Scholar

[7] Wang Y, Xu M, Peng Z, Zheng G. J Mater Chem A, 2013, 1: 13222-13226 CrossRef Google Scholar

[8] Park CM, Kim JH, Kim H, Sohn HJ. Chem Soc Rev, 2010, 39: 3115-3141 CrossRef PubMed Google Scholar

[9] Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X. Angew Chem, 2014, 126: 6828-6832 CrossRef Google Scholar

[10] Yuan D, Huang G, Yin D, Wang X, Wang C, Wang L. ACS Appl Mater Interfaces, 2017, 9: 18178-18186 CrossRef Google Scholar

[11] Yuan C, Wu HB, Xie Y, Lou XWD. Angew Chem Int Ed, 2014, 53: 1488-1504 CrossRef PubMed Google Scholar

[12] Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L. Adv Energy Mater, 2016, 6: 1600376 CrossRef Google Scholar

[13] Wu C, Kopold P, van Aken PA, Maier J, Yu Y. Adv Mater, 2017, 29: 1604015 CrossRef PubMed Google Scholar

[14] Fan M, Chen Y, Xie Y, Yang T, Shen X, Xu N, Yu H, Yan C. Adv Funct Mater, 2016, 26: 5002 CrossRef Google Scholar

[15] Cui YH, Xue MZ, Fu ZW, Wang XL, Liu XJ. Cheminform, 2013, 44: 283–290. Google Scholar

[16] Veluri PS, Mitra S. Cheminform, 2016, 47: 87675-87679 CrossRef Google Scholar

[17] Jiang H, Chen B, Pan J, Li C, Liu C, Liu L, Yang T, Li W, Li H, Wang Y, Chen L, Chen M. J Alloys Compd, 2017, 728: 328-336 CrossRef Google Scholar

[18] Wang X, Na Z, Yin D, Wang C, Huang G, Wang L. Energy Storage Mater, 2018, 12: 103-109 CrossRef Google Scholar

[19] Xin S, Guo YG, Wan LJ. Acc Chem Res, 2012, 45: 1759-1769 CrossRef PubMed Google Scholar

[20] Yang ZD, Chang ZW, Xu JJ, Yang XY, Zhang XB. Sci China Chem, 2017, 60: 1540-1545 CrossRef Google Scholar

[21] Jiang J, Wang C, Liang J, Zuo J, Yang Q. Dalton Trans, 2015, 44: 10297-10303 CrossRef PubMed Google Scholar

[22] Zhang XD, Shi JL, Liang JY, Yin YX, Guo YG, Wan LJ. Sci China Chem, 2017, 60: 1554-1560 CrossRef Google Scholar

[23] Wang X, Chen K, Wang G, Liu X, Wang H. ACS Nano, 2017, 11: 11602-11616 CrossRef Google Scholar

[24] Yang W, Hao J, Zhang Z, Zhang B. J Colloid Interface Sci, 2015, 460: 55-60 CrossRef PubMed ADS Google Scholar

[25] Zhang JW, Zhang HT, Du ZY, Wang X, Yu SH, Jiang HL. Chem Commun, 2013, 50: 1092-1094 CrossRef PubMed Google Scholar

[26] Kaye SS, Dailly A, Yaghi OM, Long JR. J Am Chem Soc, 2007, 129: 14176-14177 CrossRef PubMed Google Scholar

[27] Zhang W, Ma D, Du J. Talanta, 2014, 120: 362-367 CrossRef PubMed Google Scholar

[28] Kong B, Selomulya C, Zheng G, Zhao D. Chem Soc Rev, 2015, 44: 7997-8018 CrossRef PubMed Google Scholar

[29] Karyakin AA, Puganova EA, Budashov IA, Kurochkin IN, Karyakina EE, Levchenko VA, Matveyenko VN, Varfolomeyev SD. Anal Chem, 2004, 76: 474-478 CrossRef PubMed Google Scholar

[30] DeLongchamp D , Hammond P . Adv Funct Mater, 2004, 14: 224-232 CrossRef Google Scholar

[31] Zhao W, Xu JJ, Shi CG, Chen HY. Langmuir, 2005, 21: 9630-9634 CrossRef PubMed Google Scholar

[32] Uemura T, Ohba M, Kitagawa S. Inorg Chem, 2004, 43: 7339-7345 CrossRef PubMed Google Scholar

[33] Graham HD. J Agric Food Chem, 1992, 40: 801-805 CrossRef Google Scholar

[34] Zhu X, Liu M, Liu Y, Chen R, Nie Z, Li J, Yao S. J Mater Chem A, 2016, 4: 8974-8977 CrossRef Google Scholar

[35] Hummers WS Jr., Offeman RE. J Am Chem Soc, 1958, 80: 1339 CrossRef Google Scholar

[36] Zhang L, Wu HB, Madhavi S, Hng HH, Lou XWD. J Am Chem Soc, 2012, 134: 17388-17391 CrossRef PubMed Google Scholar

[37] Liu X, Zhong X, Yang Z, Pan F, Gu L, Yu Y. Electrochim Acta, 2015, 152: 178-186 CrossRef Google Scholar

[38] Grosvenor AP, Wik SD, Cavell RG, Mar A. Inorg Chem, 2005, 44: 8988-8998 CrossRef PubMed Google Scholar

[39] Stankovich S, Piner RD, Chen X, Wu N, Nguyen SBT, Ruoff RS. J Mater Chem, 2006, 16: 155-158 CrossRef Google Scholar

[40] Wang S, Chen M, Xie Y, Fan Y, Wang D, Jiang JJ, Li Y, Grützmacher H, Su CY. Small, 2016, 12: 2365-2375 CrossRef PubMed Google Scholar

[41] Liu X, Cheng J, Li W, Zhong X, Yang Z, Gu L, Yu Y. Nanoscale, 2014, 6: 7817-7822 CrossRef PubMed ADS Google Scholar

[42] Liu J, Xu Y, Ma X, Feng J, Qian Y, Xiong S. Nano Energy, 2014, 7: 52-62 CrossRef Google Scholar

[43] Boyanov S, Bernardi J, Gillot F, Dupont L, Womes M, Tarascon JM, Monconduit L, Doublet ML. Cheminform, 2006, 37: 3531-3538 CrossRef Google Scholar

[44] Li Z, Li B, Yin L, Qi Y. ACS Appl Mater Interfaces, 2014, 6: 8098-8107 CrossRef PubMed Google Scholar

[45] Xu YT, Guo Y, Li C, Zhou XY, Tucker MC, Fu XZ, Sun R, Wong CP. Nano Energy, 2015, 11: 38-47 CrossRef Google Scholar

[46] Liu X, Wu Y, Yang Z, Pan F, Zhong X, Wang J, Gu L, Yu Y. J Power Sources, 2015, 293: 799-805 CrossRef ADS Google Scholar

[47] Guo P, Song H, Chen X. Electrochimica Acta, 2009, 11: 1320–1324. Google Scholar

  • Figure 1

    (a) XRD patterns of the as-synthesized FeP@NC@rGO, FeP@NC, and PB@GO composites. (b) Raman spectra of FeP@NC@rGO and FeP@NC composites (color online).

  • Figure 2

    (a) Full XPS spectrum of as-synthesized FeP@NC@rGO. XPS spectra of (b) Fe 2p, (c) P 2p, and (d) high-resolution XPS spectra of C 1s of FeP@NC@rGO.

  • Figure 3

    (a) SEM image of PB@GO. (b) SEM image of FeP@NC@rGO. (c) TEM image of PB@GO. (d) TEM image of FeP@NC@rGO. (e) HRTEM image of FeP@NC@rGO. (f–i) EDS elemental mappings of FeP@NC@rGO (color online).

  • Figure 4

    (a) N2 adsorption-desorption isotherms of FeP@NC@rGO. (b) The corresponding pore size distributions (color online).

  • Figure 5

    (a) CV curves of FeP@NC@rGO as anode for LIBs at a scanning rate of 0.1 mV s−1. (b) Galvanostatic charge/discharge profiles of the initial three cycles of FeP@NC@rGO electrode. Cycling performance of FeP@NC@rGO and FeP@NC electrodes at (c) 100 mA g−1 and (d) 1000 mA g−1. (e) Rate capability of FeP@NC@rGO and FeP@NC electrodes. (f) Nyquist of FeP@NC@rGO obtained by applying a sine wave, fitted with the equivalent circuit in the inset (color online).