Synthetic macrocyclic host molecules always play an essential role in the establishment and development of supramolecular chemistry. Along with the continuous interests in the study of classical macrocycles, recent decades have witnessed the emergence and rapid development of the chemistry and supramolecular chemistry of novel and functional macrocycles. Owing to their easy availability, a self-tunable V-shaped cavity resulted from 1,3-alternate conformation, and diversified electronic features steered by the interplay between heteroatom linkages and aromatic rings, heteracalixaromatics act as a type of versatile and powerful macrocyclic hosts in molecular recognition and fabrication of supramolecular systems. Very recently, by means of engineering the bond connectivity or the recombination of chemical bonds within heteracalixaromatics, we have devised coronarenes, a new generation of macrocycles. In this concise review, macrocyclic and supramolecular chemistry of coronarenes are summarized in the order of their syntheses, structural features, molecular recognition and self-assembly properties. In the last part of this article, personal perspectives on the study of macrocyclic and supramolecular chemistry will also be discussed.
the National Natural Science Foundation of China(21732004,21421064,91427301,21132005)
Tsinghua University.
This work was supported by the National Natural Science Foundation of China (21732004, 21421064, 91427301, 21132005) and Tsinghua University. I am indebted to talented research students and postdoctoral fellows, whose names can be found in references, for their great contributions to the project of macrocyclic and supramolecular chemistry.
The author declares no conflict of interest.
[1]
Liu
Z,
Nalluri
SKM,
Stoddart
JF.
Lehn J-M, Atwood JL, Davies JED, MacNicol DD, Vögtle F.
[2] Wang MX, Zhang XH, Zheng QY. Angew Chem Int Ed, 2004, 43: 838-842 CrossRef PubMed Google Scholar
[3] Wang MX, Yang HB. J Am Chem Soc, 2004, 126: 15412-15422 CrossRef PubMed Google Scholar
[4] Wang MX. Chem Commun, 2008, 27: 4541 CrossRef PubMed Google Scholar
[5] Wang MX. Acc Chem Res, 2012, 45: 182-195 CrossRef PubMed Google Scholar
[6] Maes W, Dehaen W. Chem Soc Rev, 2008, 37: 2393 CrossRef PubMed Google Scholar
[7]
Tsue H, Ishibashi K, Tamura R. Azacalixarene: A new class in the calixarene family. In:
[8] Morohashi N, Narumi F, Iki N, Hattori T, Miyano S. Chem Rev, 2006, 106: 5291-5316 CrossRef PubMed Google Scholar
[9]
Xu
R,
Hou
B,
Wang
D,
Wang
M.
Neri P, Sessler JL,Wang M-X.
[10] Li JT, Wang LX, Wang DX, Zhao L, Wang MX. J Org Chem, 2014, 79: 2178-2188 CrossRef PubMed Google Scholar
[11] Yao B, Wang DX, Huang ZT, Wang MX. Chem Commun, 2009, : 2899 CrossRef PubMed Google Scholar
[12] Zhang H, Yao B, Zhao L, Wang DX, Xu BQ, Wang MX. J Am Chem Soc, 2014, 136: 6326-6332 CrossRef Google Scholar
[13] Wang F, Zhao L, You J, Wang MX. Org Chem Front, 2016, 3: 880-886 CrossRef Google Scholar
[14] Zhang Q, Wang MX. Org Chem Front, 2017, 4: 283-287 CrossRef Google Scholar
[15] Zhang Q, Liu Y, Wang T, Zhang X, Long C, Wu YD, Wang MX. J Am Chem Soc, 2018, 140: 5579-5587 CrossRef PubMed Google Scholar
[16] Guo QH, Fu ZD, Zhao L, Wang MX. Angew Chem Int Ed, 2014, 53: 13548-13552 CrossRef PubMed Google Scholar
[17] Guo QH, Zhao L, Wang MX. Chem Eur J, 2016, 22: 6947-6955 CrossRef PubMed Google Scholar
[18] Clavier G, Audebert P. Chem Rev, 2010, 110: 3299-3314 CrossRef Google Scholar
[19] Lu Y, Fu ZD, Guo QH, Wang MX. Org Lett, 2017, 19: 1590-1593 CrossRef Google Scholar
[20] Fu ZD, Guo QH, Zhao L, Wang DX, Wang MX. Org Lett, 2016, 18: 2668-2671 CrossRef PubMed Google Scholar
[21] Wu ZC, Guo QH, Wang MX. Angew Chem Int Ed, 2017, 56: 7151-7155 CrossRef PubMed Google Scholar
[22] Zhao MY, Wang DX, Wang MX. J Org Chem, 2018, 83: 1502-1509 CrossRef PubMed Google Scholar
[23] Ren WS, Zhao L, Wang MX. Org Lett, 2016, 18: 3126-3129 CrossRef PubMed Google Scholar
[24] Ren WS, Wang MX. Supramol Chem, 2018, 30: 583-588 CrossRef Google Scholar
[25] Lu Y, Liang DD, Fu ZD, Guo QH, Wang MX. Chin J Chem, 2018, 36: 630-634 CrossRef Google Scholar
[26] Guo QH, Zhao L, Wang MX. Angew Chem Int Ed, 2015, 54: 8386-8389 CrossRef PubMed Google Scholar
[27] Garau C, Quiñonero D, Frontera A, Costa A, Ballester P, Deyà PM. Chem Phys Lett, 2003, 370: 7-13 CrossRef ADS Google Scholar
[28] Gallivan JP, Dougherty DA. Org Lett, 1999, 1: 103-106 CrossRef Google Scholar
[29] Alkorta I, Rozas I, Elguero J. J Org Chem, 1997, 62: 4687-4691 CrossRef Google Scholar
[30] Zeng L, Guo QH, Feng Y, Xu JF, Wei Y, Li Z, Wang MX, Zhang X. Langmuir, 2017, 33: 5829-5834 CrossRef PubMed Google Scholar
[31] Zhao MY, Guo QH, Wang MX. Org Chem Front, 2018, 5: 760-764 CrossRef Google Scholar
[32] Liu SQ, Wang DX, Zheng QY, Wang MX, Zhang EX, Wang DX, Zheng QY, Wang MX, Wang LX, Zhao L, Wang DX, Wang MX, Fa SX, Wang LX, Wang DX, Zhao L, Wang MX. Chem Commun, 2007, : 3856 CrossRef Google Scholar
[33] Wang MX. Supramol Chem, 2016, 28: 1-3 CrossRef Google Scholar
[34] Pedersen CJ. Angew Chem Int Ed Engl, 1988, 27: 1021-1027 CrossRef Google Scholar
[35] Lehn JM. Angew Chem Int Ed Engl, 1988, 27: 89-112 CrossRef Google Scholar
[36] Cram DJ. Angew Chem Int Ed Engl, 1988, 27: 1009-1020 CrossRef Google Scholar
[37]
Easton CJ, Lincoln SF.
[38]
Rebek
J.
Gutsche CD.
[39] Kim K, Selvapalam N, Ko YH, Park KM, Kim D, Kim J, Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L, Assaf KI, Nau WM. Chem Soc Rev, 2007, 36: 267-279 CrossRef PubMed Google Scholar
[40] Gale PA, Anzenbacher Jr. P, Sessler JL. Coordin Chem Rev, 2001, 222: 57-102 CrossRef Google Scholar
[41] Sisto T, Jasti R, Omachi H, Segawa Y, Itami K, Yamago S, Kayahara E, Iwamoto T, Golder MR, Jasti R, Lewis SE. Synlett, 2012, 23: 483-489 CrossRef Google Scholar
[42]
Ogoshi T.
[43] Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K, Lewis SE. Science, 2017, 356: 172-175 CrossRef PubMed ADS Google Scholar
[44] Gong HY, Rambo BM, Karnas E, Lynch VM, Sessler JL, Rambo BM, Gong HY, Oh M, Sessler JL. Nat Chem, 2010, 2: 406-409 CrossRef PubMed ADS Google Scholar
[45] Lee S, Chen CH, Flood AH. Nat Chem, 2013, 5: 704-710 CrossRef PubMed ADS Google Scholar
[46] Zhang GW, Li PF, Meng Z, Wang HX, Han Y, Chen CF. Angew Chem Int Ed, 2016, 55: 5304-5308 CrossRef PubMed Google Scholar
[47] Jia F, He Z, Yang LP, Pan ZS, Yi M, Jiang RW, Jiang W, Huang GB, Wang SH, Ke H, Yang LP, Jiang W, Shorthill BJ, Avetta CT, Glass TE. Chem Sci, 2015, 6: 6731-6738 CrossRef PubMed Google Scholar
[48] Chen H, Fan J, Hu X, Ma J, Wang S, Li J, Yu Y, Jia X, Li C. Chem Sci, 2015, 6: 197-202 CrossRef PubMed Google Scholar
[49] Mascal M, Armstrong A, Bartberger MD, Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà PM, Alkorta I, Rozas I, Elguero J. J Am Chem Soc, 2002, 124: 6274-6276 CrossRef Google Scholar
[50] Wang DX, Zheng QY, Wang QQ, Wang MX, Wang DX, Wang QQ, Han Y, Wang Y, Huang ZT, Wang MX, Wang DX, Wang MX, Zhang J, Zhou B, Sun ZR, Wang XB. Angew Chem Int Ed, 2008, 47: 7485-7488 CrossRef PubMed Google Scholar
[51] Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J, Wang DX, Wang MX, Ballester P, Vargas Jentzsch A, Hennig A, Mareda J, Matile S, Kan X, Liu H, Pan Q, Li Z, Zhao Y. Angew Chem Int Ed, 2011, 50: 9564-9583 CrossRef PubMed Google Scholar
Figure 1
General structure of heteracalixaromatics (color online).
Figure 2
General structure of coronarenes (color online).
Figure 3
The one-pot reaction method for the synthesis of oxygen and sulfur linked corona
Figure 4
Synthesis of corona[4]arene[2]tetrazines from one-pot reaction (color online).
Figure 5
One-pot three-component reaction for the synthesis corona[3]arene[2]tetrazines (color online).
Figure 6
The fragment coupling approach to corona[4]arene[2]tetrazines (color online).
Figure 7
Synthesis of corona[5]arenes from corona[6]arenes through macrocycle-to-macrocycle transformation (color online).
Figure 8
Synthesis of corona[3]arene[3]pyridazines from inverse electron demand Diels-Alder reaction of corona[3]arene[3]tetrazines (color online).
Figure 9
Synthesis of sulfone and sulphide linked corona[4]arene[2]pyridazines from selective oxidation of sulphide (color online).
Figure 10
Synthesis of functionalized coronarenes via functional group transformations (color online).
Figure 11
Some representative X-ray molecular structures of corona[6]arenes with top and side views. Substituents are hidden for clarity (color online).
Figure 12
X-ray molecular structures of corona[5]arenes with top and side views (color online).
Figure 13
Partial variable temperature 1H NMR (a) and 13C NMR (b, c (expanded)) spectra of
Figure 14
X-ray molecular structure of the complex between coronarene
Figure 15
X-ray molecular structure of complex between coronarene
Figure 16
X-ray molecular structure of complex between coronarene and 1,4-dibenzyl-1,4-diazabicyclo[2.2.2]octane-1,4-diium hexafluorophosphate. Cation and solvent molecules are omitted for clarity (color online).