SCIENCE CHINA Chemistry, Volume 61 , Issue 10 : 1307-1313(2018) https://doi.org/10.1007/s11426-018-9334-9

A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss

More info
  • ReceivedJul 12, 2018
  • AcceptedJul 17, 2018
  • PublishedJul 26, 2018


A new acceptor-donor-acceptor (A-D-A) type small-molecule acceptor NCBDT-4Cl using chlorinated end groups is reported. This new-designed molecule demonstrates wide and efficient absorption ability in the range of 600–900 nm with a narrow optical bandgap of 1.40 eV. The device based on PBDB-T-SF:NCBDT-4Cl shows a power conversion efficiency (PCE) of 13.1% without any post-treatment, which represents the best result for all as-cast organic solar cells (OSCs) to date. After device optimizations, the PCE was further enhanced to over 14% with a high short-circuit current density (Jsc) of 22.35 mA cm−2 and a fill-factor (FF) of 74.3%. The improved performance was attributed to the more efficient photo-electron conversion process in the optimal device. To our knowledge, this outstanding efficiency of 14.1% with an energy loss as low as 0.55 eV is among the best results for all single-junction OSCs.

Funded by

the National Natural Science Foundation of China(91633301,51773095)

MoST of China(2014CB643502)

Tianjin city(17JCJQJC44500,17CZDJC31100)

111 Project(B12015)


This work was supported by the National Natural Science Foundation of China (91633301, 51773095), MoST of China (2014CB643502), Tianjin city (17JCJQJC44500, 17CZDJC31100) and 111 Project (B12015). The authors also thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing the beam time.

Interest statement

The authors declare that they have no conflict of interest.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789-1791 CrossRef ADS Google Scholar

[2] Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153-161 CrossRef ADS Google Scholar

[3] Dou L, Liu Y, Hong Z, Li G, Yang Y. Chem Rev, 2015, 115: 12633-12665 CrossRef PubMed Google Scholar

[4] McAfee SM, Topple JM, Hill IG, Welch GC. J Mater Chem A, 2015, 3: 16393-16408 CrossRef Google Scholar

[5] Nielsen CB, Holliday S, Chen HY, Cryer SJ, McCulloch I. Acc Chem Res, 2015, 48: 2803-2812 CrossRef PubMed Google Scholar

[6] Li S, Liu W, Li CZ, Shi M, Chen H. Small, 2017, 13: 1701120 CrossRef PubMed Google Scholar

[7] Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119-128 CrossRef PubMed ADS Google Scholar

[8] Yang Y, Zhang ZG, Bin H, Chen S, Gao L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 15011-15018 CrossRef PubMed Google Scholar

[9] Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1: 16089 CrossRef ADS Google Scholar

[10] Cheng P, Zhang M, Lau TK, Wu Y, Jia B, Wang J, Yan C, Qin M, Lu X, Zhan X. Adv Mater, 2017, 29: 1605216 CrossRef PubMed Google Scholar

[11] Kan B, Zhang J, Liu F, Wan X, Li C, Ke X, Wang Y, Feng H, Zhang Y, Long G, Friend RH, Bakulin AA, Chen Y. Adv Mater, 2018, 30: 1704904 CrossRef PubMed Google Scholar

[12] Fei Z, Eisner FD, Jiao X, Azzouzi M, Röhr JA, Han Y, Shahid M, Chesman ASR, Easton CD, McNeill CR, Anthopoulos TD, Nelson J, Heeney M. Adv Mater, 2018, 30: 1705209 CrossRef PubMed Google Scholar

[13] Yao H, Qian D, Zhang H, Qin Y, Xu B, Cui Y, Yu R, Gao F, Hou J. Chin J Chem, 2018, 36: 491-494 CrossRef Google Scholar

[14] Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562-1564 CrossRef Google Scholar

[15] Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868 CrossRef PubMed Google Scholar

[16] Cui Y, Yao HF, Yang CY, Zhang SQ, Hou JH. Acta Polym Sin, 2018, 2: 223–230. Google Scholar

[17] Zhang Y, Yao H, Zhang S, Qin Y, Zhang J, Yang L, Li W, Wei Z, Gao F, Hou J. Sci China Chem, 2018, 61: doi: 10.1007/s11426-018-9260-2 CrossRef Google Scholar

[18] Zhang H, Yao H, Hou J, Zhu J, Zhang J, Li W, Yu R, Gao B, Zhang S, Hou J. Adv Mater, 2018, 29: 1800613 CrossRef PubMed Google Scholar

[19] Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y. Nat Commun, 2016, 7: 13651 CrossRef PubMed ADS Google Scholar

[20] Bin H, Zhong L, Zhang ZG, Gao L, Yang Y, Xue L, Zhang J, Zhang Z, Li Y. Sci China Chem, 2016, 59: 1317-1322 CrossRef Google Scholar

[21] Zhang H, Liu Y, Sun Y, Li M, Ni W, Zhang Q, Wan X, Chen Y. Sci China Chem, 2017, 60: 366-369 CrossRef Google Scholar

[22] Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat Mater, 2017, 16: 363-369 CrossRef PubMed ADS Google Scholar

[23] Xu SJ, Zhou Z, Liu W, Zhang Z, Liu F, Yan H, Zhu X. Adv Mater, 2017, 29: 1704510 CrossRef PubMed Google Scholar

[24] Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531-537 CrossRef Google Scholar

[25] Liu F, Zhou Z, Zhang C, Vergote T, Fan H, Liu F, Zhu X. J Am Chem Soc, 2016, 138: 15523-15526 CrossRef PubMed Google Scholar

[26] Yao H, Chen Y, Qin Y, Yu R, Cui Y, Yang B, Li S, Zhang K, Hou J. Adv Mater, 2016, 28: 8283-8287 CrossRef PubMed Google Scholar

[27] Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336-1343 CrossRef PubMed Google Scholar

[28] Shi X, Zuo L, Jo SB, Gao K, Lin F, Liu F, Jen AKY. Chem Mater, 2017, 29: 8369-8376 CrossRef Google Scholar

[29] Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56: 3045-3049 CrossRef PubMed Google Scholar

[30] Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131-142 CrossRef ADS Google Scholar

[31] Yang F, Li C, Lai W, Zhang A, Huang H, Li W. Mater Chem Front, 2017, 1: 1389-1395 CrossRef Google Scholar

[32] Qiu N, Zhang H, Wan X, Li C, Ke X, Feng H, Kan B, Zhang H, Zhang Q, Lu Y, Chen Y. Adv Mater, 2017, 29: 1604964 CrossRef PubMed Google Scholar

[33] Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118: 3447-3507 CrossRef PubMed Google Scholar

[34] Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170-1174 CrossRef PubMed Google Scholar

[35] Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28: 9423-9429 CrossRef PubMed Google Scholar

[36] Li S, Ye L, Zhao W, Liu X, Zhu J, Ade H, Hou J. Adv Mater, 2017, 29: 1704051 CrossRef PubMed Google Scholar

[37] Yi YQQ, Feng H, Chang M, Zhang H, Wan X, Li C, Chen Y. J Mater Chem A, 2017, 5: 17204-17210 CrossRef Google Scholar

[38] Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003 CrossRef ADS Google Scholar

[39] Kan B, Feng H, Wan X, Liu F, Ke X, Wang Y, Wang Y, Zhang H, Li C, Hou J, Chen Y. J Am Chem Soc, 2017, 139: 4929-4934 CrossRef PubMed Google Scholar

[40] Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148-7151 CrossRef PubMed Google Scholar

[41] Zheng Z, Awartani OM, Gautam B, Liu D, Qin Y, Li W, Bataller A, Gundogdu K, Ade H, Hou J. Adv Mater, 2017, 29: 1604241 CrossRef PubMed Google Scholar

[42] Zhang ZG, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Energy Environ Sci, 2014, 7: 1966-1973 CrossRef Google Scholar

[43] Blom P, Mihailetchi V, Koster L, Markov D. Adv Mater, 2007, 19: 1551-1566 CrossRef Google Scholar

[44] Müller-Buschbaum P. Adv Mater, 2014, 26: 7692-7709 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Chemical structures of PBDB-T-SF and NCBDT-4Cl; (b) normalized absorption spectra of PBDB-T-SF and NCBDT-4Cl neat films; (c) the energy diagrams of PBDB-T-SF and NCBDT-4Cl in the thin-film state calculated from CV results (color online).

  • Scheme 1

    Synthetic route of NCBDT-4Cl.

  • Figure 2

    (a) Current density-voltage (J-V) curves of the as-cast and optimal devices based on PBDB-T-SF:NCBDT-4Cl; (b) the performance histogram of the counts of the as-cast and optimal devices; (c) the EQE curves of the as-cast and optimal devices; (d) Jph versus Veff of the as-cast and optimal devices, respectively (color online).

  • Figure 3

    AFM and TEM images for (a, c) as-cast blend film and (b, d) optimal blend film. The scale bar is 200 nm (color online).

  • Figure 4

    2D-GIXD patterns for (a, b) NCBDT-4Cl and PBDB-T-SF neat films, and (c, d) PBDB-T-SF:NCBDT-4Cl blend films, respectively (color online).

  • Table 1   OSC parameters of the as-cast and optimal devices using the conventional device configuration under the illumination of AM 1.5G and the average data were obtained from 20 devices


    Voc (V)

    Jsc (mA cm−2)

    FF (%)

    PCE (%)

    Eloss (eV)


    0.885 (0.880±0.003)

    20.81 (20.38±0.24)

    70.9 (70.2±0.4)

    13.1 (12.8±0.1)


    Optimal a)

    0.851 (0.848±0.003)

    22.35 (22.05±0.18)

    74.3 (74.0±0.2)

    14.1 (13.8±0.2)


    0.2% DIO + thermal annealing at 110 °C for 10 min.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号