logo

Efficient organic-inorganic hybrid cathode interfacial layer enabled by polymeric dopant and its application in large-area polymer solar cells

More info
  • ReceivedJul 12, 2018
  • AcceptedAug 22, 2018
  • PublishedNov 5, 2018

Abstract


Funded by

the Ministry of Science and Technology(2014CB643501)

the National Natural Science Foundation of China(91633301,21520102006,51521002,51603070)


Acknowledgment

This work was supported by the Ministry of Science and Technology (2014CB643501) and the National Natural Science Foundation of China (91633301, 21520102006, 51521002, 51603070).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789-1791 CrossRef ADS Google Scholar

[2] Cheng YJ, Yang SH, Hsu CS. Chem Rev, 2009, 109: 5868-5923 CrossRef PubMed Google Scholar

[3] Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Chem Rev, 2015, 115: 12666-12731 CrossRef PubMed Google Scholar

[4] Zuo L, Zhang S, Shi M, Li H, Chen H. Mater Chem Front, 2017, 1: 304-309 CrossRef Google Scholar

[5] Ying L, Huang F, Bazan GC. Nat Commun, 2017, 8: 14047 CrossRef PubMed ADS Google Scholar

[6] Cheng P, Zhan X. Chem Soc Rev, 2016, 45: 2544-2582 CrossRef PubMed Google Scholar

[7] Li Y. Acc Chem Res, 2012, 45: 723-733 CrossRef PubMed Google Scholar

[8] Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem Rev, 2016, 116: 7397-7457 CrossRef PubMed Google Scholar

[9] Cai Y, Huo L, Sun Y. Adv Mater, 2017, 29: 1605437 CrossRef PubMed Google Scholar

[10] Hu Z, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60: 571-582 CrossRef Google Scholar

[11] Huang Y, Kramer EJ, Heeger AJ, Bazan GC. Chem Rev, 2014, 114: 7006-7043 CrossRef PubMed Google Scholar

[12] Ye L, Hu H, Ghasemi M, Wang T, Collins BA, Kim JH, Jiang K, Carpenter JH, Li H, Li Z, McAfee T, Zhao J, Chen X, Lai JLY, Ma T, Bredas JL, Yan H, Ade H. Nat Mater, 2018, 17: 253-260 CrossRef PubMed ADS Google Scholar

[13] Xiao M, Zhang K, Jin Y, Yin Q, Zhong W, Huang F, Cao Y. Nano Energy, 2018, 48: 53-62 CrossRef Google Scholar

[14] Yip HL, Jen AKY. Energy Environ Sci, 2012, 5: 5994-6011 CrossRef Google Scholar

[15] Litzov I, Brabec CJ. Materials, 2013, 6: 5796-5820 CrossRef PubMed ADS Google Scholar

[16] Choy WCH, Zhang D. Small, 2016, 12: 416-431 CrossRef PubMed Google Scholar

[17] Zhang K, Huang F, Cao Y, Acta Polym Sin, 2017: 1400–1414. Google Scholar

[18] Cui C, Li Y, Li Y. Adv Energy Mater, 2017, 7: 1601251 CrossRef Google Scholar

[19] Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562-1564 CrossRef Google Scholar

[20] Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868 CrossRef PubMed Google Scholar

[21] Zhang J, Xue R, Xu G, Chen W, Bian GQ, Wei C, Li Y, Li Y. Adv Funct Mater, 2018, 28: 1705847 CrossRef Google Scholar

[22] Duan C, Zhang K, Zhong C, Huang F, Cao Y. Chem Soc Rev, 2013, 42: 9071 CrossRef PubMed Google Scholar

[23] Hu Z, Zhang K, Huang F, Cao Y. Chem Commun, 2015, 51: 5572-5585 CrossRef PubMed Google Scholar

[24] Yin Z, Wei J, Zheng Q. Adv Sci, 2016, 3: 1500362 CrossRef PubMed Google Scholar

[25] Hau SK, Yip HL, Jen AKY. Polymer Rev, 2010, 50: 474-510 CrossRef Google Scholar

[26] Wang K, Liu C, Meng T, Yi C, Gong X. Chem Soc Rev, 2016, 45: 2937-2975 CrossRef PubMed Google Scholar

[27] White MS, Olson DC, Shaheen SE, Kopidakis N, Ginley DS. Appl Phys Lett, 2006, 89: 143517 CrossRef ADS Google Scholar

[28] Hau SK, Yip HL, Baek NS, Zou J, O’Malley K, Jen AKY. Appl Phys Lett, 2008, 92: 253301 CrossRef ADS Google Scholar

[29] MacLeod BA, Tremolet de Villers BJ, Schulz P, Ndione PF, Kim H, Giordano AJ, Zhu K, Marder SR, Graham S, Berry JJ, Kahn A, Olson DC. Energy Environ Sci, 2015, 8: 592-601 CrossRef Google Scholar

[30] Bai S, Jin Y, Liang X, Ye Z, Wu Z, Sun B, Ma Z, Tang Z, Wang J, Würfel U. Adv Energy Mater, 2015, 5: 286–287. Google Scholar

[31] Hewlett RM, McLachlan MA. Adv Mater, 2016, 28: 3893-3921 CrossRef PubMed Google Scholar

[32] Fu P, Guo X, Zhang B, Chen T, Qin W, Ye Y, Hou J, Zhang J, Li C. J Mater Chem A, 2016, 4: 16824-16829 CrossRef Google Scholar

[33] Liu C, Zhang L, Xiao L, Peng X, Cao Y. ACS Appl Mater Interfaces, 2016, 8: 28225-28230 CrossRef Google Scholar

[34] Liu X, Li X, Li Y, Song C, Zhu L, Zhang W, Wang HQ, Fang J. Adv Mater, 2016, 28: 7405-7412 CrossRef PubMed Google Scholar

[35] Nian L, Zhang W, Wu S, Qin L, Liu L, Xie Z, Wu H, Ma Y. ACS Appl Mater Interfaces, 2015, 7: 25821-25827 CrossRef Google Scholar

[36] Liao SH, Jhuo HJ, Cheng YS, Chen SA. Adv Mater, 2013, 25: 4766-4771 CrossRef PubMed Google Scholar

[37] Nian L, Zhang W, Zhu N, Liu L, Xie Z, Wu H, Würthner F, Ma Y. J Am Chem Soc, 2015, 137: 6995-6998 CrossRef PubMed Google Scholar

[38] Xie Z, Würthner F. Adv Energy Mater, 2017, 7: 1602573 CrossRef Google Scholar

[39] Zheng D, Huang W, Fan P, Zheng Y, Huang J, Yu J. ACS Appl Mater Interfaces, 2017, 9: 4898-4907 CrossRef Google Scholar

[40] Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip HL, Huang F, Cao Y. J Am Chem Soc, 2016, 138: 2004-2013 CrossRef PubMed Google Scholar

[41] Wu N, Luo Q, Bao Z, Lin J, Li YQ, Ma CQ. Sol Energy Mater Sol Cells, 2015, 141: 248-259 CrossRef Google Scholar

[42] Wang J, Yan C, Zhang X, Zhao X, Fu Y, Zhang B, Xie Z. J Mater Chem C, 2016, 4: 10820-10826 CrossRef Google Scholar

[43] Sugiyama K, Ishii H, Ouchi Y, Seki K. J Appl Phys, 2000, 87: 295-298 CrossRef ADS Google Scholar

[44] Mandoc MM, Kooistra FB, Hummelen JC, de Boer B, Blom PWM. Appl Phys Lett, 2007, 91: 263505 CrossRef ADS Google Scholar

[45] Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM. Appl Phys Lett, 2005, 86: 123509 CrossRef ADS Google Scholar

[46] Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 1771-1782 CrossRef ADS arXiv Google Scholar

[47] Cowan SR, Street RA, Cho S, Heeger AJ. Phys Rev B, 2011, 83: 8 CrossRef ADS Google Scholar

[48] Lu L, Xu T, Chen W, Landry ES, Yu L. Nat Photon, 2014, 8: 716-722 CrossRef ADS Google Scholar

[49] Lee EJ, Heo SW, Han YW, Moon DK. J Mater Chem C, 2016, 4: 2463-2469 CrossRef Google Scholar

[50] Hong S, Kang H, Kim G, Lee S, Kim S, Lee JH, Lee J, Yi M, Kim J, Back H, Kim JR, Lee K. Nat Commun, 2016, 7: 10279 CrossRef PubMed ADS Google Scholar

[51] Zuo L, Zhang S, Li H, Chen H. Adv Mater, 2015, 27: 6983-6989 CrossRef PubMed Google Scholar

  • Figure 1

    Chemical structure of materials (a) and device architecture (b) of inverted PSCs used in this work (color online).

  • Figure 2

    (a) Transmittance spectra of ITO, ITO/ZnO and ITO/NDI-PFNBr@ZnO; (b) I-V curves of the devices for ITO/ZnO or NDI-PFNBr@ZnO (50 nm)/Ag in the dark; photographs of deionized water on top of ZnO film (c) and NDI-PFNBr@ZnO film (d) (color online).

  • Figure 3

    (a) J-V characteristics of the PTB7-Th:PC71BM-based PSCs with pure ZnO and NDI-PFNBr@ZnO under 100 mW/cm2 simulated solar illumination; (b) the EQE and the calculated JSC curves of the corresponding inverted PSCs (color online).

  • Figure 4

    JSC (a) and VOC (b) as a function of light intensity of the inverted PSCs with ZnO and NDI-PFNBr@ZnO as cathode interlayer; (c) transient photocurrent (TPC) of the inverted PSCs devices based on ZnO and NDI-PFNBr@ZnO CIL; (d) photocurrent density (Jph) versus effective voltage (Veff) curves (color online).

  • Figure 5

    (a) J-V characteristics of large-area blade-coated devices based on NDI-PFNBr@ZnO with active layer of 16 and 93 cm2; (b) the photograph of blade-coated large-area PSCs devices; (c, d) the photographs of the 93 cm2 PSC module powered a hygrometer and a mobile phone in the indoor sunshine (color online).

  • Table 1   Photovoltaic performances of devices based on PTB7-Th:PCBM with ZnO and NDI-PFNBr@ZnO as CIL

    CIL

    Area (cm2)

    VOC (V)

    JSC(mA/cm2)

    FF (%)

    PCEmax (%)

    ZnO

    0.04

    0.77

    16.3

    68

    8.52 (8.39) a)

    NDI-PFNBr@ZnO

    0.04

    0.78

    17.7

    72

    10.04 (9.9)

    ZnO

    16 (module)

    3.05

    3.9

    59

    7.11 (6.81)

    NDI-PFNBr@ZnO

    16 (module)

    3.06

    4.2

    62

    8.05 (7.73)

    The data in brackets are average data, which were from 10 independent devices.