logo

Facile construction of two-dimensional coordination polymers with a well-designed redox-active organic linker for improved lithium ion battery performance

More info
  • ReceivedAug 22, 2018
  • AcceptedOct 16, 2018
  • PublishedJan 7, 2019

Abstract


Funded by

the National Natural Science Foundation of China(21622105,21501071,21421001)

Shenzhen Fundamental Research Project(JCYJ20160525164227350)

the Ministry of Education of China(B12015)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21622105, 21501071, 21421001), Shenzhen Fundamental Research Project (JCYJ20160525164227350), the Ministry of Education of China (B12015), and the Natural Science Foundation of Tianjin (18JCJQJC47200).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Melot BC, Tarascon JM. Acc Chem Res, 2013, 46: 1226-1238 CrossRef PubMed Google Scholar

[2] Tarascon JM, Armand M. Nature, 2001, 414: 359-367 CrossRef PubMed Google Scholar

[3] Meng J, Guo H, Niu C, Zhao Y, Xu L, Li Q, Mai L. Joule, 2017, 1: 522-547 CrossRef Google Scholar

[4] Liu Y, Zhou G, Liu K, Cui Y. Acc Chem Res, 2017, 50: 2895-2905 CrossRef PubMed Google Scholar

[5] Assat G, Tarascon JM. Nat Energy, 2018, 3: 373-386 CrossRef ADS Google Scholar

[6] Muraliganth T, Vadivel Murugan A, Manthiram A. Chem Commun, 2009, 9: 7360-7362 CrossRef PubMed Google Scholar

[7] Li X, Zheng S, Jin L, Li Y, Geng P, Xue H, Pang H, Xu Q. Adv Energy Mater, 2018, 8: 1800716 CrossRef Google Scholar

[8] Gao M, Liu X, Yang H, Yu Y. Sci China Chem, 2018, 61: 1151-1158 CrossRef Google Scholar

[9] Chen B, Xiang S, Qian G. Acc Chem Res, 2010, 43: 1115-1124 CrossRef PubMed Google Scholar

[10] Zhou HC, Long JR, Yaghi OM. Chem Rev, 2012, 112: 673-674 CrossRef PubMed Google Scholar

[11] Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. Science, 2013, 341: 1230444 CrossRef PubMed Google Scholar

[12] Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B. Coord Chem Rev, 2016, 307: 361-381 CrossRef Google Scholar

[13] Zheng S, Li X, Yan B, Hu Q, Xu Y, Xiao X, Xue H, Pang H. Adv Energy Mater, 2017, 7: 1602733 CrossRef Google Scholar

[14] Li X, Cheng F, Zhang S, Chen J. J Power Sources, 2006, 160: 542-547 CrossRef ADS Google Scholar

[15] Liu Q, Yu L, Wang Y, Ji Y, Horvat J, Cheng ML, Jia X, Wang G. Inorg Chem, 2013, 52: 2817-2822 CrossRef PubMed Google Scholar

[16] Saravanan K, Nagarathinam M, Balaya P, Vittal JJ. J Mater Chem, 2010, 20: 8329-8335 CrossRef Google Scholar

[17] Shen L, Song H, Wang C. Electrochim Acta, 2017, 235: 595-603 CrossRef Google Scholar

[18] Li G, Yang H, Li F, Cheng F, Shi W, Chen J, Cheng P. Inorg Chem, 2016, 55: 4935-4940 CrossRef PubMed Google Scholar

[19] Lin Y, Zhang Q, Zhao C, Li H, Kong C, Shen C, Chen L. Chem Commun, 2015, 51: 697-699 CrossRef PubMed Google Scholar

[20] Wolff L, Dtsch Ber. Chem Ges, 1887, 20: 425–433. Google Scholar

[21] Liang Z, Qu C, Guo W, Zou R, Xu Q. Adv Mater, 2018, 30: 1702891 CrossRef PubMed Google Scholar

[22] Cong L, Xie H, Li J. Adv Energy Mater, 2017, 7: 1601906 CrossRef Google Scholar

[23] Li X, Tao L, Chen Z, Fang H, Li X, Wang X, Xu JB, Zhu H. Appl Phys Rev, 2017, 4: 021306 CrossRef ADS Google Scholar

[24] Shi L, Zhao T. J Mater Chem A, 2017, 5: 3735-3758 CrossRef Google Scholar

[25] An T, Wang Y, Tang J, Wang Y, Zhang L, Zheng G. J Colloid Interface Sci, 2015, 445: 320-325 CrossRef PubMed ADS Google Scholar

[26] Han X, Yi F, Sun T, Sun J. Electrochem Commun, 2012, 25: 136-139 CrossRef Google Scholar

[27] Li C, Hu X, Tong W, Yan W, Lou X, Shen M, Hu B. ACS Appl Mater Interfaces, 2017, 9: 29829-29838 CrossRef Google Scholar

[28] Zhang Y, Niu YB, Liu T, Li YT, Wang MQ, Hou J, Xu M. Mater Lett, 2015, 161: 712-715 CrossRef Google Scholar

[29] Sheldrick GM. SHELXTL NT Version 5.1. Program for Solution and Refinement of Crystal Structures. Germany: University of Göttingen, 1997. Google Scholar

[30] Sheldrick GM. Acta Crystlogr A Found Crystlogr, 2008, 64: 112-122 CrossRef PubMed ADS Google Scholar

[31] Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. J Appl Crystlogr, 2009, 42: 339-341 CrossRef Google Scholar

[32] Alfonso M, Neels A, Stoeckli-Evans H. Acta Crystlogr C Cryst Struct Commun, 2001, 57: 1144-1146 CrossRef Google Scholar

[33] Peng C, Ning GH, Su J, Zhong G, Tang W, Tian B, Su C, Yu D, Zu L, Yang J, Ng MF, Hu YS, Yang Y, Armand M, Loh KP. Nat Energy, 2017, 2: 17074 CrossRef ADS Google Scholar

[34] Lou X, Ning Y, Li C, Shen M, Hu B, Hu X, Hu B. Inorg Chem, 2018, 57: 3126-3132 CrossRef PubMed Google Scholar

[35] Wang H, Yuan S, Si Z, Zhang X. Energy Environ Sci, 2015, 8: 3160-3165 CrossRef Google Scholar

[36] Deng Q, Fan C, Wang L, Cao B, Jin Y, Che CM, Li J. Electrochim Acta, 2016, 222: 1086-1093 CrossRef Google Scholar

[37] Senthil Kumar R, Nithya C, Gopukumar S, Anbu Kulandainathan M. Energy Tech, 2014, 2: 921-927 CrossRef Google Scholar

[38] Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J. ACS Nano, 2014, 8: 1728-1738 CrossRef PubMed Google Scholar

[39] Torardi CC, Miao CR. Chem Mater, 2002, 14: 4430-4433 CrossRef Google Scholar

[40] Gao S, Chen Z, Wei M, Wei K, Zhou H. Electrochim Acta, 2009, 54: 1115-1118 CrossRef Google Scholar

[41] Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kisailus D, Zhao H, Tang Z, Wang D. Angew Chem, 2013, 125: 6545-6548 CrossRef Google Scholar

[42] Maiti S, Pramanik A, Manju U, Mahanty S. ACS Appl Mater Interfaces, 2016, 7: 16357-16363 CrossRef Google Scholar

[43] Song H, Shen L, Wang J, Wang C. J Mater Chem A, 2016, 4: 15411-15419 CrossRef Google Scholar

[44] Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE. Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie: Perkin-Elmer Corporation, 1979. Google Scholar

[45] Beamson G, Briggs D. High Resolution XPS of Organic Polymers: the Scienta ESCA300 Database. Chichester: Wiley, 1992. Google Scholar

[46] Marco JF, Gancedo JR, Gracia M, Gautier JL, Ríos E, Berry FJ. J Solid State Chem, 2000, 153: 74-81 CrossRef ADS Google Scholar

[47] Song Y, Yu L, Gao Y, Shi C, Cheng M, Wang X, Liu HJ, Liu Q. Inorg Chem, 2017, 56: 11603-11609 CrossRef PubMed Google Scholar

[48] Bai L, Gao Q, Zhao Y. J Mater Chem A, 2017, 4: 14106-14110 CrossRef Google Scholar

[49] Huang Q, Wei T, Zhang M, Dong LZ, Zhang AM, Li SL, Liu WJ, Liu J, Lan YQ. J Mater Chem A, 2017, 5: 8477-8483 CrossRef Google Scholar

[50] Zhang L, Cheng F, Shi W, Chen J, Cheng P. ACS Appl Mater Interfaces, 2018, 10: 6398-6406 CrossRef Google Scholar

  • Figure 1

    (a) Synthesis of H4pztc; (b) coordination geometries of CoII ions in 1; (c) the coordination environments in 1 (hydrogen atoms were omitted for clarity); (d) wavy layers along the b axis; (e) the 3D supramolecular structure of 1 along the a axis. Atom colors: Co (purple), C (gray), N (blue), and O (red) (color online).

  • Figure 2

    Calculation of the relative energies and spatial distributions of HOMO and LUMO energy levels for H4pztc, 1, and 2. The left axis represents the relative energy voltage (vs. Li/Li+, ELi/Li+) and the right axis represents the relative energy level in vacuum (Evac) (color online).

  • Figure 3

    Electrochemical performances of two CPs as LIBs anodes: charge-discharge profiles at 200 mA g−1 of the 1 (a) and the 2 (b); cycling performances of 1 (c) and 2 (d) at 200 mA g−1 over 150 cycles; rate performance of 1 (e) and 2 (f) at different current densities (color online).

  • Figure 4

    Cyclic voltammetry (CV) curves for the 2–4 cycles of 1 (a) and 2 (b) at a scan rate of 0.1 mV s−1 in the voltage window of 0.01–3.0 V vs. Li/Li+. XPS spectra of 1 and 2 from the assembled electrodes before (c and d) and after (e and f) the electrochemical discharge processes (color online).