High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries

More info
  • ReceivedJul 13, 2018
  • AcceptedOct 25, 2018
  • PublishedDec 21, 2018


Funded by

the National Natural Science Foundation of China(21333002)

and the National Key Research and Development Plan(2016YFB0901500)


This work was supported by the National Natural Science Foundation of China (21333002), and the National Key Research and Development Plan (2016YFB0901500).

Interest statement

The authors declare that they have no conflict of interest.

Contributions statement

These authors contributed equally to this work.


[1] Kim H, Hong J, Park KY, Kim H, Kim SW, Kang K. Chem Rev, 2014, 114: 11788-11827 CrossRef PubMed Google Scholar

[2] Chang Z, Yang Y, Li M, Wang X, Wu Y. J Mater Chem A, 2014, 2: 10739-10755 CrossRef Google Scholar

[3] Alias N, Mohamad AA. J Power Sources, 2015, 274: 237-251 CrossRef ADS Google Scholar

[4] Li W, Dahn JR, Wainwright DS. Science, 1994, 264: 1115-1118 CrossRef PubMed ADS Google Scholar

[5] Köhler J, Makihara H, Uegaito H, Inoue H, Toki M. Electrochim Acta, 2000, 46: 59-65 CrossRef Google Scholar

[6] Wang H, Zeng Y, Huang K, Liu S, Chen L. Electrochim Acta, 2007, 52: 5102-5107 CrossRef Google Scholar

[7] Wang H, Huang K, Zeng Y, Yang S, Chen L. Electrochim Acta, 2007, 52: 3280-3285 CrossRef Google Scholar

[8] Wang G, Qu Q, Wang B, Shi Y, Tian S, Wu Y. ChemPhysChem, 2008, 9: 2299-2301 CrossRef PubMed Google Scholar

[9] Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK. J Power Sources, 1998, 74: 198-201 CrossRef ADS Google Scholar

[10] Wang Y, Chen L, Wang Y, Xia Y. Electrochim Acta, 2015, 173: 178-183 CrossRef Google Scholar

[11] Wang Y, Luo J, Wang C, Xia Y. J Electrochem Soc, 2006, 153: A1425 CrossRef Google Scholar

[12] Wang G, Fu L, Zhao N, Yang L, Wu Y, Wu H. Angew Chem Int Ed, 2007, 46: 295-297 CrossRef PubMed Google Scholar

[13] Manickam M, Singh P, Thurgate S, Prince K. J Power Sources, 2006, 158: 646-649 CrossRef ADS Google Scholar

[14] He P, Liu JL, Cui WJ, Luo JY, Xia YY. Electrochim Acta, 2011, 56: 2351-2357 CrossRef Google Scholar

[15] Wang Y, Yi J, Xia Y. Adv Energy Mater, 2012, 2: 830-840 CrossRef Google Scholar

[16] Luo JY, Cui WJ, He P, Xia YY. Nat Chem, 2010, 2: 760-765 CrossRef PubMed ADS Google Scholar

[17] Luo JY, Xia YY. Adv Funct Mater, 2007, 17: 3877-3884 CrossRef Google Scholar

[18] Li W. J Electrochem Soc, 1995, 142: 1742-1746 CrossRef Google Scholar

[19] Wessells C, Huggins RA, Cui Y. J Power Sources, 2011, 196: 2884-2888 CrossRef ADS Google Scholar

[20] Wen Y, Chen L, Pang Y, Guo Z, Bin D, Wang Y, Wang C, Xia Y. ACS Appl Mater Interfaces, 2017, 9: 8075-8082 CrossRef Google Scholar

[21] Patoux S, Masquelier C. Chem Mater, 2002, 14: 5057-5068 CrossRef Google Scholar

[22] Hao Y, Wu C, Cui Y, Xu K, Yuan Z, Zhuang Q. Ionics, 2014, 20: 1079-1085 CrossRef Google Scholar

[23] Senguttuvan P, Rousse G, Oró-Solé J, Tarascon JM, Palacín MR. J Mater Chem A, 2013, 1: 15284-15289 CrossRef Google Scholar

[24] Li C, Sun X, Du Q, Zhang H. Solid State Ion, 2013, 249-250: 72-77 CrossRef Google Scholar

[25] Wu W, Shanbhag S, Wise A, Chang J, Rutt A, Whitacre JF. J Electrochem Soc, 2015, 162: A1921-A1926 CrossRef Google Scholar

[26] Zhang H, Zhou Y, Li C, Yang C, Zhu T. J Mater Chem A, 2016, 4: 13390-13394 CrossRef Google Scholar

[27] Norberg ST, Svensson G, Albertsson J. Acta Crystlogr C Cryst Struct Commun, 2001, 57: 225-227 CrossRef Google Scholar

[28] Sanz J, Iglesias JE, Soria J, Losilla ER, Aranda MAG, Bruque S. Chem Mater, 1997, 9: 996-1003 CrossRef Google Scholar

[29] Hu S, Song Y, Yuan S, Liu H, Xu Q, Wang Y, Wang CX, Xia YY. J Power Sources, 2016, 303: 333-339 CrossRef ADS Google Scholar

[30] Liu J, Conry TE, Song X, Doeff MM, Richardson TJ. Energy Environ Sci, 2011, 4: 885-888 CrossRef Google Scholar

[31] Rai AK, Gim J, Song J, Mathew V, Anh LT, Kim J. Electrochim Acta, 2012, 75: 247-253 CrossRef Google Scholar

[32] Shi Z, Wang Q, Ye W, Li Y, Yang Y. Microporous Mesoporous Mater, 2006, 88: 232-237 CrossRef Google Scholar

[33] Sun Y, Gai L, Zhou Y, Zuo X, Zhou J, Jiang H. CrystEngComm, 2014, 16: 10681-10691 CrossRef Google Scholar

[34] Dobbelaere T, Mattelaer F, Roy AK, Vereecken P, Detavernier C. J Mater Chem A, 2017, 5: 330-338 CrossRef Google Scholar

[35] Aravindan V, Reddy MV, Madhavi S, Mhaisalkar SG, Subba Rao GV, Chowdari BVR. J Power Sources, 2011, 196: 8850-8854 CrossRef ADS Google Scholar

[36] Rai AK, Lim J, Mathew V, Gim J, Kang J, Paul BJ, Kim D, Ahn S, Kim S, Ahn K, Kim J. Electrochem Commun, 2012, 19: 9-12 CrossRef Google Scholar

[37] Teng D, Yu Y, Li P, Bai X, Yang X. RSC Adv, 2013, 3: 14237-14240 CrossRef Google Scholar

[38] Sun K, Juarez DA, Huang H, Jung E, Dillon SJ. J Power Sources, 2014, 248: 582-587 CrossRef ADS Google Scholar

  • Figure 1

    (a) Rietveld refinement of the XRD pattern of TPO-NMS sample; (b, c) the corresponding structures of TiP2O7 (color online).

  • Scheme 1

    Schematic presentation of the synthesis process of carbon-coated TiP2O7 nanoporous microsphere (TPO-NMS) (color online).

  • Figure 2

    TG curve of the TPO-NMS.

  • Figure 3

    SEM images of TPO-NMS for (a) the secondary microsphere and (b) primary nanoparticles; (c) cross-section SEM image of one single secondary microsphere and (d) its magnified image.

  • Figure 4

    (a) SEM image of TPO-NMS for the one single secondary microsphere and (b) EDX elemental mapping of Ti, P, O and C elements (color online).

  • Figure 5

    TEM images of TPO-NMS (color online).

  • Figure 6

    (a) N2 sorption isotherm and (b) pore size distribution of TPO-NMS sample.

  • Figure 7

    (a) Charge/discharge curve of TPO-NMS at 0.2 A/g between 1.5 and 3.5 V in organic electrolyte; (b) cycling performance of TPO-NMS at 0.1 A/g in organic electrolyte (color online).

  • Figure 8

    (a) Charge-discharge curves of TPO-NMS in 1 M Li2SO4 under nitrogen atmosphere within the voltage of −0.8 and 0 V at various current rates; (b) cycle performance of TPO-NMS in 1 M Li2SO4 solution at the rate of 0.5 A/g (color online).

  • Figure 9

    Typical charge/discharge curves of the individual electrode TPO-NMS and LiMn2O4 (vs. SCE) along with the voltage profile of the aqueous lithium-ion battery in the range of 0.5−1.7 V at a current rate of 0.2 A/g.

  • Figure 10

    (a) Charge/discharge curves and (b) capacity retention plots of TPO-NMS//LiMn2O4 cell at different rates; (c) cycle performance of TPO-NMS//LiMn2O4 cell at 0.5 A/g for 1000 cycles (color online).

  • Table 1   Crystallographic parameters for the TiPO phase based on the Rietveld refinement of the XRD data




    X-ray (Bruker D8 Advance X)

    Crystal system


    Space group


    Lattice parameters

    a=b=c=23.63094 Å, α=β=γ=90°

    Cell volume

    13196.03 Å3


    1.5406 Å







    Rwp=ω(I0IC)2/(ωI02)1/2; Rp=|I0IC|/IC; χ2=ω (I0IC)2/(NobsNvar).

  • Table 2   Comparison of electrochemical performance of TiPO composites synthesized through different process in organic electrolytes


    Synthesis method



    Current density

    Capacity (mA h/g)

    (cycle number)

    Capacity retention

    Submicro-TPO [22]

    Liquid-assisted method (900 °C-6 h in air)


    15 mA/g



    Nano-TPO [35]

    Urea assisted combustion synthesis (900 °C-6 h in air)


    15 mA/g



    Planar TPO electrode [34]

    Plasma-enhanced atomic layer deposition process


    100 mA/g



    Low temperature TPO [23]

    Low temperature synthesis (800 °C-2 h)


    5 mA/g



    Flower-like TPO/C [33]

    Solvothermal method (750 °C-4 h in N2)


    200 mA/g

    600 mA/g

    1000 mA/g







    TPO/Li2.6Co0.4N [36]

    Co-precipitation method (600 °C-3 h in air)


    0.4 mA/cm2



    Ti3O5/TPO@MPCNFs [37]

    Electrospinning, sol-gel ripening


    50 mA/g



    TPO/EG [20]

    Liquid-assisted method (750 °C-5 h in Ar)


    100 mA/g



    TPO-NMS (our work)

    Solid-phase combined with spray drying method


    100 mA/g