logo

Trimetallic Au@PdPt core-shell nanoparticles with ultrathin PdPt skin as highly stable electrocatalysts for the oxygen reduction reaction in acid solution

More info
  • ReceivedAug 9, 2018
  • AcceptedOct 25, 2018
  • PublishedJan 24, 2019

Abstract


Funded by

the National Natural Science Foundation of China(21773224,21633008,21575134,11374297,21405149)

National Key Research and Development Plan(2016YFA0203200)

K. C. Wong Education Foundation.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21773224, 21633008, 21575134, 11374297, 21405149), the National Key Research and Development Plan (2016YFA0203200) and K. C. Wong Education Foundation.


Interest statement

The authors declare that they have no conflict of interest


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Shao M, Chang Q, Dodelet JP, Chenitz R. Chem Rev, 2016, 116: 3594-3657 CrossRef PubMed Google Scholar

[2] Chen A, Holt-Hindle P. Chem Rev, 2010, 110: 3767-3804 CrossRef PubMed Google Scholar

[3] Kang Y, Snyder J, Chi M, Li D, More KL, Markovic NM, Stamenkovic VR. Nano Lett, 2014, 14: 6361-6367 CrossRef PubMed ADS Google Scholar

[4] Wang C, Markovic NM, Stamenkovic VR. ACS Catal, 2012, 2: 891-898 CrossRef Google Scholar

[5] Wang C, Chi M, Li D, Strmcnik D, van der Vliet D, Wang G, Komanicky V, Chang KC, Paulikas AP, Tripkovic D, Pearson J, More KL, Markovic NM, Stamenkovic VR. J Am Chem Soc, 2011, 133: 14396-14403 CrossRef PubMed Google Scholar

[6] Sasaki K, Naohara H, Choi YM, Cai Y, Chen WF, Liu P, Adzic RR. Nat Commun, 2012, 3: 1115 CrossRef PubMed ADS Google Scholar

[7] He LL, Zheng JN, Song P, Zhong SX, Wang AJ, Chen Z, Feng JJ. J Power Sources, 2015, 276: 357-364 CrossRef ADS Google Scholar

[8] Wang G, Huang B, Xiao L, Ren Z, Chen H, Wang D, Abruña HD, Lu J, Zhuang L. J Am Chem Soc, 2014, 136: 9643-9649 CrossRef PubMed Google Scholar

[9] Dai Y, Chen S. ACS Appl Mater Interfaces, 2015, 7: 823-829 CrossRef PubMed Google Scholar

[10] Hunt ST, Milina M, Alba-Rubio AC, Hendon CH, Dumesic JA, Román-Leshkov Y. Science, 2016, 352: 974-978 CrossRef PubMed ADS Google Scholar

[11] Shi G, Yano H, Tryk DA, Iiyama A, Uchida H. ACS Catal, 2017, 7: 267-274 CrossRef Google Scholar

[12] Lu Y, Jiang Y, Chen W. Nano Energy, 2013, 2: 836-844 CrossRef Google Scholar

[13] Sun X, Li D, Ding Y, Zhu W, Guo S, Wang ZL, Sun S. J Am Chem Soc, 2014, 136: 5745-5749 CrossRef PubMed Google Scholar

[14] Guo S, Zhang S, Su D, Sun S. J Am Chem Soc, 2013, 135: 13879-13884 CrossRef PubMed Google Scholar

[15] Zhang S, Guo S, Zhu H, Su D, Sun S. J Am Chem Soc, 2012, 134: 5060-5063 CrossRef PubMed Google Scholar

[16] Barman SC, Hossain MF, Yoon H, Park JY. Biosens Bioelectron, 2018, 100: 16-22 CrossRef PubMed Google Scholar

[17] Wang L, Yamauchi Y. J Am Chem Soc, 2010, 132: 13636-13638 CrossRef PubMed Google Scholar

[18] Venarusso LB, Bettini J, Maia G. J Solid State Electrochem, 2016, 20: 1753-1764 CrossRef Google Scholar

[19] Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR. Nano Lett, 2011, 11: 919-926 CrossRef PubMed ADS Google Scholar

[20] Wang Q, Chen S, Shi F, Chen K, Nie Y, Wang Y, Wu R, Li J, Zhang Y, Ding W, Li Y, Li L, Wei Z. Adv Mater, 2016, 28: 10673-10678 CrossRef PubMed Google Scholar

[21] Zeng J, Yang J, Lee JY, Zhou W. J Phys Chem B, 2006, 110: 24606-24611 CrossRef PubMed Google Scholar

[22] Zhang J, Sasaki K, Sutter E, Adzic RR. Science, 2007, 315: 220-222 CrossRef PubMed ADS Google Scholar

[23] Mourdikoudis S, Chirea M, Zanaga D, Altantzis T, Mitrakas M, Bals S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I. Nanoscale, 2015, 7: 8739-8747 CrossRef PubMed ADS Google Scholar

[24] Li D, Meng F, Wang H, Jiang X, Zhu Y. Electrochim Acta, 2016, 190: 852-861 CrossRef Google Scholar

[25] Chen A, Ostrom C. Chem Rev, 2015, 115: 11999-12044 CrossRef PubMed Google Scholar

[26] Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y. Science, 2009, 324: 1302-1305 CrossRef PubMed ADS Google Scholar

[27] Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR. Angew Chem Int Ed, 2010, 49: 8602-8607 CrossRef PubMed Google Scholar

[28] Fang PP, Duan S, Lin XD, Anema JR, Li JF, Buriez O, Ding Y, Fan FR, Wu DY, Ren B, Wang ZL, Amatore C, Tian ZQ. Chem Sci, 2011, 2: 531-539 CrossRef Google Scholar

[29] Duan S, Ji YF, Fang PP, Chen YX, Xu X, Luo Y, Tian ZQ. Phys Chem Chem Phys, 2013, 15: 4625-4633 CrossRef PubMed ADS Google Scholar

[30] Liu CW, Wei YC, Liu CC, Wang KW. J Mater Chem, 2012, 22: 4641-4644 CrossRef Google Scholar

[31] Huang X, Zhang H, Guo C, Zhou Z, Zheng N. Angew Chem Int Ed, 2009, 48: 4808-4812 CrossRef PubMed Google Scholar

[32] Zhang Y, Li X, Li K, Xue B, Zhang C, Du C, Wu Z, Chen W. ACS Appl Mater Interfaces, 2017, 9: 32688-32697 CrossRef Google Scholar

[33] Turkevich J, Stevenson PC, Hillier J. Discuss Faraday Soc, 1951, 11: 55-75 CrossRef Google Scholar

[34] Frens G. Nat Phys Sci, 1973, 241: 20-22 CrossRef ADS Google Scholar

[35] Lu Y, Wang Y, Chen W. J Power Sources, 2011, 196: 3033-3038 CrossRef ADS Google Scholar

  • Figure 1

    TEM (a) and high-resolution TEM (b) images of Au@Pd1.19Pt1 NPs (color online).

  • Figure 2

    (a) Line-scanning profile across a single Au@Pd1.19Pt1 NP; (b) HAADF-STEM image of Au@Pd1.19Pt1 NPs; elemental mapping images of Au (c), Pd (d), Pt (e) and their overlap (f) (color online).

  • Figure 3

    XRD patterns of the Au, Au@PdPt, and Au@Pt NPs. black, red and blue bars indicate the positions of diffraction peaks from the standard Au (JCPDS 65-2870), Pd (JCPDS 65-2867) and Pt (JCPDS 65-2868), respectively (color online).

  • Figure 4

    High-resolution XPS spectra of Pd 3d (a) and Pt 4f (b) in the Au@Pd1.19Pt1 NPs; Pd 3d spectrum of the Pd/C catalyst (c) and Pt 4f spectrum of the Pt/C catalyst (d) (color online).

  • Figure 5

    (a) CVs of various Au@PdPt NPs with different Pd contents in N2-saturated 0.1 M HClO4 solution with 50 mV s−1; (b) ORR polarization curves of the Au@PdPt NPs in 0.1 M O2-saturated HClO4 solution with a rotation rate of 1600 r min−1 at 10 mV s−1; (c) specific kinetic current densities of ORR on Au@Pd1.19Pt1 NPs and commercial Pt/C at 0.528 V (vs. Ag/AgCl); (d) ORR polarization curves of Au@Pd1.19Pt1 NPs in O2-saturated 0.1 M HClO4 solution at a scan rate of 10 mV s−1; (e) Koutecky-Levich plots (J−1 vs. ω−1/2) from Au@Pd1.19Pt1 NPs at different potentials (vs. Ag/AgCl); (f) polarization curves of the Au@Pd1.19Pt1 NPs before and after 3000 potential cycles in 0.1 M O2-saturated HClO4 solution with a potential range from 0.1 to 0.7 V (vs. Ag/AgCl) (color online).