logo

Aggregation-amplified circularly polarized luminescence from axial chiral boron difluoride complexes

More info
  • ReceivedOct 5, 2018
  • AcceptedNov 7, 2018
  • PublishedJan 7, 2019

Abstract

The development of small organic molecules with intense and switchable circularly polarized luminescence (CPL) is currently attracting great interest due to their promising applications in chiroptical devices and sensors. In this paper, CPL-active BF2-bridged azaanthracene dimers (BA1 and BA2) were facilely synthesized by incorporating boron difluoride unit to the binaphthalene. BA1 and BA2 show moderate CPL in diluted solutions, however, BA2 exhibited aggregation-amplified red CPL with large dissymmetry factor up to 1.6×10−2. Moreover, acid-/base-triggered CPL switch off/on were also realized via disaggregation/aggregation of BA2 in tetrahydrofuran (THF)/water binary solvents.


Funded by

the National Nature Science Foundation of China(21501085)

Key University Science Research Project of Jiangsu Province(17KJA150004)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21501085) and Key University Science Research Project of Jiangsu Province (17KJA150004). We are grateful to the High Performance Computing Center of Nanjing Tech University supporting the computational resources.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Longhi G, Castiglioni E, Koshoubu J, Mazzeo G, Abbate S. Chirality, 2016, 28: 696-707 CrossRef PubMed Google Scholar

[2] Riehl JP, Richardson FS. Chem Rev, 1986, 86: 1-16 CrossRef Google Scholar

[3] Chen SH, Katsis D, Schmid AW, Mastrangelo JC, Tsutsui T, Blanton TN. Nature, 1999, 397: 506-508 CrossRef ADS Google Scholar

[4] Li M, Li SH, Zhang D, Cai M, Duan L, Fung MK, Chen CF. Angew Chem Int Ed, 2018, 57: 2889-2893 CrossRef PubMed Google Scholar

[5] Brandt JR, Wang X, Yang Y, Campbell AJ, Fuchter MJ. J Am Chem Soc, 2016, 138: 9743-9746 CrossRef PubMed Google Scholar

[6] Peeters E, Christiaans MPT, Janssen RAJ, Schoo HFM, Dekkers HPJM, Meijer EW. J Am Chem Soc, 1997, 119: 9909-9910 CrossRef Google Scholar

[7] Feuillastre S, Pauton M, Gao L, Desmarchelier A, Riives AJ, Prim D, Tondelier D, Geffroy B, Muller G, Clavier G, Pieters G. J Am Chem Soc, 2016, 138: 3990-3993 CrossRef PubMed Google Scholar

[8] Furumi S. Chem Record, 2010, 58: 394-408 CrossRef PubMed Google Scholar

[9] Jiménez J, Cerdán L, Moreno F, Maroto BL, García-Moreno I, Lunkley JL, Muller G, de la Moya S. J Phys Chem C, 2017, 121: 5287-5292 CrossRef PubMed Google Scholar

[10] Maeda H, Bando Y, Shimomura K, Yamada I, Naito M, Nobusawa K, Tsumatori H, Kawai T. J Am Chem Soc, 2011, 133: 9266-9269 CrossRef PubMed Google Scholar

[11] Carr R, Evans NH, Parker D. Chem Soc Rev, 2012, 41: 7673-7686 CrossRef PubMed Google Scholar

[12] Yuasa J, Ohno T, Miyata K, Tsumatori H, Hasegawa Y, Kawai T. J Am Chem Soc, 2011, 133: 9892-9902 CrossRef PubMed Google Scholar

[13] Liu D, Zhou Y, Zhang Y, Li H, Chen P, Sun W, Gao T, Yan P. Inorg Chem, 2018, 57: 8332-8337 CrossRef PubMed Google Scholar

[14] Norel L, Rudolph M, Vanthuyne N, Williams JAG, Lescop C, Roussel C, Autschbach J, Crassous J, Réau R. Angew Chem Int Ed, 2010, 49: 99-102 CrossRef PubMed Google Scholar

[15] Anger E, Rudolph M, Shen C, Vanthuyne N, Toupet L̈, Roussel C, Autschbach J, Crassous J, Réau Ŕ. J Am Chem Soc, 2011, 133: 3800-3803 CrossRef PubMed Google Scholar

[16] Xing P, Li Y, Wang Y, Li PZ, Chen H, Phua SZF, Zhao Y. Angew Chem, 2018, 130: 7900-7905 CrossRef Google Scholar

[17] Meng F, Li Y, Zhang W, Li S, Quan Y, Cheng Y. Polym Chem, 2017, 8: 1555-1561 CrossRef Google Scholar

[18] Yang D, Duan P, Zhang L, Liu M. Nat Commun, 2017, 8: 15727 CrossRef PubMed ADS Google Scholar

[19] Aoki R, Toyoda R, Kögel JF, Sakamoto R, Kumar J, Kitagawa Y, Harano K, Kawai T, Nishihara H. J Am Chem Soc, 2017, 139: 16024-16027 CrossRef PubMed Google Scholar

[20] Sheng Y, Shen D, Zhang W, Zhang H, Zhu C, Cheng Y. Chem Eur J, 2015, 21: 13196-13200 CrossRef PubMed Google Scholar

[21] Otani T, Tsuyuki A, Iwachi T, Someya S, Tateno K, Kawai H, Saito T, Kanyiva KS, Shibata T. Angew Chem Int Ed, 2017, 56: 3906-3910 CrossRef PubMed Google Scholar

[22] Dhbaibi K, Favereau L, Srebro-Hooper M, Jean M, Vanthuyne N, Zinna F, Jamoussi B, Di Bari L, Autschbach J, Crassous J. Chem Sci, 2018, 9: 735-742 CrossRef PubMed Google Scholar

[23] Nakakuki Y, Hirose T, Sotome H, Miyasaka H, Matsuda K. J Am Chem Soc, 2018, 140: 4317-4326 CrossRef PubMed Google Scholar

[24] Roose J, Leung ACS, Wang J, Peng Q, Sung HHY, Williams ID, Tang BZ. Chem Sci, 2016, 7: 6106-6114 CrossRef PubMed Google Scholar

[25] Sánchez-Carnerero EM, Moreno F, Maroto BL, Agarrabeitia AR, Ortiz MJ, Vo BG, Muller G, de la Moya S. J Am Chem Soc, 2014, 136: 3346-3349 CrossRef PubMed Google Scholar

[26] Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718-11940 CrossRef PubMed Google Scholar

[27] Roose J, Tang BZ, Wong KS. Small, 2016, 12: 6495-6512 CrossRef PubMed Google Scholar

[28] Heffern MC, Matosziuk LM, Meade TJ. Chem Rev, 2014, 114: 4496-4539 CrossRef PubMed Google Scholar

[29] Lu H, Mack J, Yang Y, Shen Z. Chem Soc Rev, 2014, 43: 4778-4823 CrossRef PubMed Google Scholar

[30] Bai Y, Liu D, Han Z, Chen Y, Chen Z, Jiao Y, He W, Guo Z. Sci China Chem, 2018, 61: 1413-1422 CrossRef Google Scholar

[31] Saikawa M, Daicho M, Nakamura T, Uchida J, Yamamura M, Nabeshima T. Chem Commun, 2016, 52: 4014-4017 CrossRef PubMed Google Scholar

[32] Alnoman RB, Rihn S, O’Connor DC, Black FA, Costello B, Waddell PG, Clegg W, Peacock RD, Herrebout W, Knight JG, Hall MJ. Chem Eur J, 2016, 22: 93-96 CrossRef PubMed Google Scholar

[33] Gobo Y, Yamamura M, Nakamura T, Nabeshima T. Org Lett, 2016, 18: 2719-2721 CrossRef PubMed Google Scholar

[34] Zinna F, Bruhn T, Guido CA, Ahrens J, Bröring M, Di Bari L, Pescitelli G. Chem Eur J, 2016, 22: 16089-16098 CrossRef PubMed Google Scholar

[35] Clarke R, Ho KL, Alsimaree AA, Woodford OJ, Waddell PG, Bogaerts J, Herrebout W, Knight JG, Pal R, Penfold TJ, Hall MJ. ChemPhotoChem, 2017, 1: 513-517 CrossRef Google Scholar

[36] Ray C, Sánchez-Carnerero EM, Moreno F, Maroto BL, Agarrabeitia AR, Ortiz MJ, López-Arbeloa Í, Bañuelos J, Cohovi KD, Lunkley JL, Muller G, de la Moya S. Chem Eur J, 2016, 22: 8805-8808 CrossRef PubMed Google Scholar

[37] Zhang S, Wang Y, Meng F, Dai C, Cheng Y, Zhu C. Chem Commun, 2015, 51: 9014-9017 CrossRef PubMed Google Scholar

[38] Gartzia-Rivero L, Sánchez-Carnerero EM, Jiménez J, Bañuelos J, Moreno F, Maroto BL, López-Arbeloa I, de la Moya S. Dalton Trans, 2017, 46: 11830-11839 CrossRef PubMed Google Scholar

[39] Wu Y, Wang S, Li Z, Shen Z, Lu H. J Mater Chem C, 2016, 4: 4668-4674 CrossRef Google Scholar

[40] Tian D, Qi F, Ma H, Wang X, Pan Y, Chen R, Shen Z, Liu Z, Huang L, Huang W. Nat Commun, 2018, 9: 2688 CrossRef PubMed ADS Google Scholar

[41] Wang X, Wu Y, Liu Q, Li Z, Yan H, Ji C, Duan J, Liu Z. Chem Commun, 2015, 51: 784-787 CrossRef PubMed Google Scholar

[42] Liu Q, Wang X, Yan H, Wu Y, Li Z, Gong S, Liu P, Liu Z. J Mater Chem C, 2015, 3: 2953-2959 CrossRef Google Scholar

[43] Duan W, Liu Q, Huo Y, Cui J, Gong S, Liu Z. Org Biomol Chem, 2018, 16: 4977-4984 CrossRef PubMed Google Scholar

[44] Zhang S, Sheng Y, Wei G, Quan Y, Cheng Y, Zhu C. Polym Chem, 2015, 6: 2416-2422 CrossRef Google Scholar

[45] Frath D, Azizi Ś, Ulrich G, Retailleau P, Ziessel R. Org Lett, 2011, 13: 3414-3417 CrossRef PubMed Google Scholar

[46] Park YS, Grove CI, González-López M, Urgaonkar S, Fettinger JC, Shaw JT. Angew Chem Int Ed, 2011, 50: 3730-3733 CrossRef PubMed Google Scholar

[47] Kimoto T, Amako T, Tajima N, Kuroda R, Fujiki M, Imai Y. Asian J Org Chem, 2013, 2: 404-410 CrossRef Google Scholar

[48] Solntsev KM, Bartolo EA, Pan G, Muller G, Bommireddy S, Huppert D, Tolbert LM. Isr J Chem, 2009, 49: 227-233 CrossRef PubMed Google Scholar

[49] Gon M, Sawada R, Morisaki Y, Chujo Y. Macromolecules, 2017, 50: 1790-1802 CrossRef ADS Google Scholar

  • Figure 1

    Chemical Structure of (R)-/(S)-BA1 and (R)-/(S)-BA2 (color online).

  • Scheme 1

    Synthesis of (R)-/(S)-BA1 and (R)-/(S)-BA2.

  • Figure 2

    X-ray crystallographic structure of (S)-BA2 (ORTEP drawing with 50% probability, H-atoms are omitted for clarity) (color online).

  • Figure 3

    (a) Absorption and normalized emission spectra of (R)-/(S)-BA1 and (R)-/(S)-BA2 in DCM (1.0×10−5 mol/L); (b) the CD and CPL spectra of (R)-/(S)-BA1 (1.0×10−5 mol/L for CD spectra and 1.0×10−3 mol/L for CPL spectra in DCM, respectively) and (R)-/(S)-BA2 (1.0×10−5 mol/L for CD spectra in DCM and 1.0×10−3 mol/L in o-DCB for CPL spectra, respectively) (color online).

  • Figure 4

    Fluorescence spectra of (R)-BA2 (a) and (S)-BA2 (b), and CPL spectra (c) of (R)/(S)-BA2 in THF-water mixture (5.0×10−5 mol/L) with varied fw; the plot of the emission intensity at 647 nm of (R)-BA2 (d) and (S)-BA2 (e), and the plot of glum for (R)-BA2 (650 nm) and (S)-BA2 (648 nm) (f) in THF-water mixture. Insets in (d, e) are fluorescence photographs of (R)-BA2 and (S)-BA2 in THF-water mixture with different fw taken under 356 nm UV irradiation. λex=365 nm (color online).

  • Figure 5

    Proposed mechanism for the AIEE and aggregation-induced glum increment of (R)-/(S)-BA2 (color online).

  • Figure 6

    CPL and fluorescence spectra of (a) (R)-/(S)-BA1 and (R)-/(S)-BA2 in the powder solid-state, and (b) (R)-/(S)-BA2 in THF–water mixtures (1.0´10−5 mol/L) with fw of 80%. λex=400 nm (color online).

  • Table 1   Photophysical data of ()-/()- and ()-/()- in solution and in solid-state

    Compound

    In solution

    In solid-state d)

    λabs (nm)/ε (mol−1 cm−1) a)

    λem(nm) (Φf) a), b)

    SS (cm−1) c)

    τ (ns)

    λabs (nm)

    λem (nm)

    Φf e)

    SS (cm−1) c)

     

    (R)-BA1

    338 (47800), 437 (4100)

    601 (14%)

    6244

    1.9

    470

    577

    11%

    3946

     

    (S)-BA1

    337 (40100), 437 (3500)

    601 (14%)

    6244

    1.9

    463

    572

    11%

    4115

     

    (R)-BA2

    324 (47800), 449 (46900)

    612 (6.8%)

    5974

    0.24

    550

    660

    12%

    3030

     

    (S)-BA2

    324 (30100), 446 (28100)

    612 (6.8%)

    5974

    0.24

    541

    655

    12%

    3217

     

    Measured at a concentration of 1.0×10−5 mol/L in DCM at 25°C, and ε in the first column is the molar absorption coefficient; b) determined using Coumarin-6 (Φf=0.8 in EtOH) for (R)-/(S)-BA1 and 1,3,5,7-tetramethyl-8-phenyl-4,4-difluoroboradiazaindaccene (Φf=0.65 in MeOH) for (R)-/(S)-BA2 as reference; c) energy gap between the absorption and emission maxima; d) powder samples of (R)-/(S)-BA1 and (R)-/(S)-BA2 were used for absorption and emission spectra collection, and the absolute quantum yield determination; e) absolute quantum yield determined by calibrated integrating sphere systems.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号