logo

Freestanding reduced graphene oxide/sodium vanadate composite films for flexible aqueous zinc-ion batteries

More info
  • ReceivedOct 30, 2018
  • AcceptedNov 26, 2018
  • PublishedFeb 22, 2019

Abstract


Funded by

the National Natural Science Foundation of China(21573116,51822205,21875121,51602218)

Ministry of Science and Technology of China(2017YFA0206701)

Ministry of Education of China(B12015)

Tianjin Basic and High-Tech Development(16PTSYJC00030)

the Fundamental Research Funds for the Central Universities and the Young Thousand Talents Program.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21573116, 51822205, 21875121, 51602218), Ministry of Science and Technology of China (2017YFA0206701), Ministry of Education of China (B12015), Tianjin Basic and High-Tech Development (16PTSYJC00030), the Fundamental Research Funds for the Central Universities and the Young Thousand Talents Program.


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

The authors contributed equally to this work.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Zeng Y, Zhang X, Meng Y, Yu M, Yi J, Wu Y, Lu X, Tong Y. Adv Mater, 2017, 29: 1700274 CrossRef PubMed Google Scholar

[2] Li H, Han C, Huang Y, Huang Y, Zhu M, Pei Z, Xue Q, Wang Z, Liu Z, Tang Z, Wang Y, Kang F, Li B, Zhi C. Energy Environ Sci, 2018, 11: 941-951 CrossRef Google Scholar

[3] Liu L, Niu Z, Chen J. Chem Soc Rev, 2016, 45: 4340-4363 CrossRef PubMed Google Scholar

[4] Niu Z, Liu L, Zhang L, Zhou W, Chen X, Xie S. Adv Energy Mater, 2015, 5: 1500677 CrossRef Google Scholar

[5] Chen C, Cao J, Lu Q, Wang X, Song L, Niu Z, Chen J. Adv Funct Mater, 2016, 27: 1604639 CrossRef Google Scholar

[6] Amin K, Meng Q, Ahmad A, Cheng M, Zhang M, Mao L, Lu K, Wei Z. Adv Mater, 2018, 30: 1703868 CrossRef PubMed Google Scholar

[7] Li S, Meng X, Yi Q, Alonso JA, Fernández-Díaz MT, Sun C, Wang ZL. Nano Energy, 2018, 52: 510-516 CrossRef Google Scholar

[8] Chen C, Cao J, Wang X, Lu Q, Han M, Wang Q, Dai H, Niu Z, Chen J, Xie S. Nano Energy, 2017, 42: 187-194 CrossRef Google Scholar

[9] Kim H, Hong J, Park KY, Kim H, Kim SW, Kang K. Chem Rev, 2014, 114: 11788-11827 CrossRef PubMed Google Scholar

[10] Yamada Y, Usui K, Sodeyama K, Ko S, Tateyama Y, Yamada A. Nat Energy, 2016, 1: 16129 CrossRef ADS Google Scholar

[11] Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. Nat Energy, 2016, 1: 16119 CrossRef ADS Google Scholar

[12] Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller KT, Liu J. Nat Energy, 2016, 1: 16039 CrossRef ADS Google Scholar

[13] Zhang N, Dong Y, Jia M, Bian X, Wang Y, Qiu M, Xu J, Liu Y, Jiao L, Cheng F. ACS Energy Lett, 2018, 3: 1366-1372 CrossRef Google Scholar

[14] Yang Y, Tang Y, Fang G, Shan L, Guo J, Zhang W, Wang C, Wang L, Zhou J, Liang S. Energy Environ Sci, 2018, 11: 3157-3162 CrossRef Google Scholar

[15] Li G, Yang Z, Jiang Y, Jin C, Huang W, Ding X, Huang Y. Nano Energy, 2016, 25: 211-217 CrossRef Google Scholar

[16] Fang G, Zhou J, Pan A, Liang S. ACS Energy Lett, 2018, 3: 2480-2501 CrossRef Google Scholar

[17] Song M, Tan H, Chao D, Fan HJ. Adv Funct Mater, 2018, 28: 1802564 CrossRef Google Scholar

[18] Xu C, Li B, Du H, Kang F. Angew Chem Int Ed, 2012, 51: 933-935 CrossRef PubMed Google Scholar

[19] Sun W, Wang F, Hou S, Yang C, Fan X, Ma Z, Gao T, Han F, Hu R, Zhu M, Wang C. J Am Chem Soc, 2017, 139: 9775-9778 CrossRef PubMed Google Scholar

[20] Zhang N, Cheng F, Liu J, Wang L, Long X, Liu X, Li F, Chen J. Nat Commun, 2017, 8: 405 CrossRef PubMed ADS Google Scholar

[21] Zhang L, Chen L, Zhou X, Liu Z. Adv Energy Mater, 2015, 5: 1400930 CrossRef Google Scholar

[22] Trócoli R, La Mantia F. ChemSusChem, 2015, 8: 481-485 CrossRef PubMed Google Scholar

[23] Zhang L, Chen L, Zhou X, Liu Z. Sci Rep, 2015, 5: 18263 CrossRef PubMed ADS Google Scholar

[24] Wan F, Zhang L, Wang X, Bi S, Niu Z, Chen J. Adv Funct Mater, 2018, 28: 1804975 CrossRef Google Scholar

[25] Guo Z, Ma Y, Dong X, Huang J, Wang Y, Xia Y. Angew Chem Int Ed, 2018, 57: 11737-11741 CrossRef PubMed Google Scholar

[26] Kundu D, Oberholzer P, Glaros C, Bouzid A, Tervoort E, Pasquarello A, Niederberger M. Chem Mater, 2018, 30: 3874-3881 CrossRef Google Scholar

[27] Zhao Q, Huang W, Luo Z, Liu L, Lu Y, Li Y, Li L, Hu J, Ma H, Chen J. Sci Adv, 2018, 4: eaao1761 CrossRef PubMed ADS Google Scholar

[28] Chao D, Zhu CR, Song M, Liang P, Zhang X, Tiep NH, Zhao H, Wang J, Wang R, Zhang H, Fan HJ. Adv Mater, 2018, 30: 1803181 CrossRef PubMed Google Scholar

[29] Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, Xu X, An Q, Shuang Y, Shao Y, Mueller KT, Mai L, Liu J, Yang J. Adv Mater, 2018, 30: 1703725 CrossRef PubMed Google Scholar

[30] Alfaruqi MH, Mathew V, Song J, Kim S, Islam S, Pham DT, Jo J, Kim S, Baboo JP, Xiu Z, Lee KS, Sun YK, Kim J. Chem Mater, 2017, 29: 1684-1694 CrossRef Google Scholar

[31] Dai X, Wan F, Zhang L, Cao H, Niu Z. Energy Storage Mater, 2018, doi: 10.1016/j.ensm.2018.07.022. Google Scholar

[32] Hu P, Zhu T, Wang X, Wei X, Yan M, Li J, Luo W, Yang W, Zhang W, Zhou L, Zhou Z, Mai L. Nano Lett, 2018, 18: 1758-1763 CrossRef PubMed ADS Google Scholar

[33] Soundharrajan V, Sambandam B, Kim S, Alfaruqi MH, Putro DY, Jo J, Kim S, Mathew V, Sun YK, Kim J. Nano Lett, 2018, 18: 2402-2410 CrossRef PubMed ADS Google Scholar

[34] Wan F, Zhang L, Dai X, Wang X, Niu Z, Chen J. Nat Commun, 2018, 9: 1656 CrossRef PubMed ADS Google Scholar

[35] Yang S, Lohe MR, Müllen K, Feng X. Adv Mater, 2016, 28: 6213-6221 CrossRef PubMed Google Scholar

[36] Tang L, Wang Y, Li Y, Feng H, Lu J, Li J. Adv Funct Mater, 2009, 19: 2782-2789 CrossRef Google Scholar

[37] Cao J, Chen C, Chen K, Lu Q, Wang Q, Zhou P, Liu D, Song L, Niu Z, Chen J. J Mater Chem A, 2017, 5: 15008-15016 CrossRef Google Scholar

[38] Cheng HM. Sci China Chem, 2018, 61: 1475-1476 CrossRef Google Scholar

[39] Ma J, Xiang Z, Zhang J. Sci China Chem, 2018, 61: 592-597 CrossRef Google Scholar

[40] Luo S, Yao M, Lei S, Yan P, Wei X, Wang X, Liu L, Niu Z. Nanoscale, 2017, 9: 4646-4651 CrossRef PubMed Google Scholar

[41] Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J. J Am Chem Soc, 2010, 132: 8180-8186 CrossRef PubMed Google Scholar

[42] Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen SBT, Ruoff RS. Nature, 2007, 448: 457-460 CrossRef PubMed ADS Google Scholar

[43] Zhang K, Park M, Zhou L, Lee GH, Li W, Kang YM, Chen J. Adv Funct Mater, 2016, 26: 6728-6735 CrossRef Google Scholar

[44] Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, Fan X, Savilov SV, Lin J, Fan HJ, Shen ZX. Nat Commun, 2016, 7: 12122 CrossRef PubMed ADS Google Scholar

[45] Chao D, Liang P, Chen Z, Bai L, Shen H, Liu X, Xia X, Zhao Y, Savilov SV, Lin J, Shen ZX. ACS Nano, 2016, 10: 10211-10219 CrossRef Google Scholar

[46] Xia X, Chao D, Zhang Y, Zhan J, Zhong Y, Wang X, Wang Y, Shen ZX, Tu J, Fan HJ. Small, 2016, 12: 3048-3058 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Optical image, (b, c) cross-sectional SEM images, (d) top-view SEM image, and (e) TEM image of RGO/NVO-70% composite film. (f) TEM elemental mapping images of NVO nanobelts (color online).

  • Figure 2

    (a) XRD patterns of RGO film, NVO nanobelts, and RGO/NVO composite film. (b) Stress-strain curves of RGO and RGO/NVO composite films. (c) Sheet resistances of RGO and RGO/NVO composite films. (d) The normalized sheet resistances of RGO and RGO/NVO composite films at different bending states, where R0 and L0 are the initial sheet resistance and length of RGO or RGO/NVO composite films, respectively; R and L are the sheet resistance and distance between two ends of these films under different bending states, respectively. Inset shows the schematic diagram of bending (color online).

  • Figure 3

    (a) Charge/discharge curves of RGO/NVO-70% composite film-based ZIBs at different current densities; (b) CV curves of RGO/NVO-70% composite film-based ZIBs at different scan rates; (c) the corresponding log(peak current) versus log(scan rate) plots at each redox peak; (d) surface-controlled capacity contributions at 0.1 mV s−1; (e) long cycle life of RGO/NVO-70% composite film-based ZIBs at 5 A g−1 (color online).

  • Figure 4

    (a) Schematic diagram of flexible soft-packaged ZIBs. Optical images of a calculator powered by two soft-packaged ZIBs in series under (b) flat state and (c) bending state. (d) Discharge curves of the flexible soft-packaged ZIBs at 1 A g−1 under different bending states. Insets show the schematic diagrams of different bending states. (e) The relationship between capacity and bending times (the soft-packaged ZIBs were bent to 0.4L0, where L0 is the initial length of soft-packaged ZIBs) (color online).