logo

Covalent organic frameworks derived hollow structured N-doped noble carbon for asymmetric-electrolyte Zn-air battery

More info
  • ReceivedNov 6, 2018
  • AcceptedNov 27, 2018
  • PublishedJan 31, 2019

Abstract


Funded by

the 1000 Plan Professorship for Young Talents

Hundred Talents Program of FuJian Province

the Fujian Science and Technology Key Project(2016H0043)

and the National Natural Science foundation of China(21703249,21701175)


Acknowledgment

This work was supported by the 1000 Plan Professorship for Young Talents, Hundred Talents Program of Fujian Province, the Fujian Science and Technology Key Project (2016H0043), and the National Natural Science Foundation of China (21703249, 21701175).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Li Y, Dai H. Chem Soc Rev, 2014, 43: 5257-5275 CrossRef PubMed Google Scholar

[2] Lee JS, Tai Kim S, Cao R, Choi NS, Liu M, Lee KT, Cho J. Adv Energy Mater, 2011, 1: 34-50 CrossRef Google Scholar

[3] Zhang J, Zhao Z, Xia Z, Dai L. Nat Nanotech, 2015, 10: 444-452 CrossRef PubMed ADS Google Scholar

[4] Lee DU, Choi JY, Feng K, Park HW, Chen Z. Adv Energy Mater, 2014, 4: 1301389 CrossRef Google Scholar

[5] Cao R, Lee JS, Liu M, Cho J. Adv Energy Mater, 2012, 2: 816-829 CrossRef Google Scholar

[6] Cheng F, Chen J. Chem Soc Rev, 2012, 41: 2172-2192 CrossRef PubMed Google Scholar

[7] Wang ZL, Xu D, Xu JJ, Zhang XB. Chem Soc Rev, 2014, 43: 7746-7786 CrossRef PubMed Google Scholar

[8] Li L, Liu C, He G, Fan D, Manthiram A. Energy Environ Sci, 2015, 8: 3274-3282 CrossRef Google Scholar

[9] Cai P, Li Y, Chen J, Jia J, Wang G, Wen Z. ChemElectroChem, 2018, 5: 589-592 CrossRef Google Scholar

[10] Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. J Am Chem Soc, 2013, 135: 10274-10277 CrossRef PubMed Google Scholar

[11] Yin Y, Han J, Zhang Y, Zhang X, Xu P, Yuan Q, Samad L, Wang X, Wang Y, Zhang Z, Zhang P, Cao X, Song B, Jin S. J Am Chem Soc, 2016, 138: 7965-7972 CrossRef PubMed Google Scholar

[12] Wang YJ, Zhao N, Fang B, Li H, Bi XT, Wang H. Chem Rev, 2015, 115: 3433-3467 CrossRef PubMed Google Scholar

[13] Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G. J Am Chem Soc, 2017, 139: 14143-14149 CrossRef PubMed Google Scholar

[14] Ma J, Xiang Z, Zhang J. Sci China Chem, 2018, 61: 592-597 CrossRef Google Scholar

[15] Liu X, Park M, Kim MG, Gupta S, Wang X, Wu G, Cho J. Nano Energy, 2016, 20: 315-325 CrossRef Google Scholar

[16] Sun M, Zhang G, Liu H, Liu Y, Li J. Sci China Mater, 2015, 58: 683-692 CrossRef Google Scholar

[17] Cai P, Hong Y, Ci S, Wen Z. Nanoscale, 2016, 8: 20048-20055 CrossRef PubMed Google Scholar

[18] Yan D, Guo L, Xie C, Wang Y, Li Y, Li H, Wang S. Sci China Mater, 2018, 61: 679-685 CrossRef Google Scholar

[19] Cheng F, Zhang T, Zhang Y, Du J, Han X, Chen J. Angew Chem Int Ed, 2013, 52: 2474-2477 CrossRef PubMed Google Scholar

[20] Yi QF, Zhang YH, Liu XP, Yang YH. Sci China Chem, 2014, 57: 739-747 CrossRef Google Scholar

[21] Wen Z, Ci S, Zhang F, Feng X, Cui S, Mao S, Luo S, He Z, Chen J. Adv Mater, 2012, 24: 1399-1404 CrossRef PubMed Google Scholar

[22] Zhang G, Jin X, Li H, Wang L, Hu C, Sun X. Sci China Mater, 2016, 59: 337-347 CrossRef Google Scholar

[23] Zhou YX, Yao HB, Wang Y, Liu HL, Gao MR, Shen PK, Yu SH. Chem Eur J, 2010, 16: 12000-12007 CrossRef PubMed Google Scholar

[24] Miura A, Rosero-Navarro C, Masubuchi Y, Higuchi M, Kikkawa S, Tadanaga K. Angew Chem Int Ed, 2016, 55: 7963-7967 CrossRef PubMed Google Scholar

[25] Liang HW, Wei W, Wu ZS, Feng X, Müllen K. J Am Chem Soc, 2013, 135: 16002-16005 CrossRef PubMed Google Scholar

[26] Wu G, More KL, Johnston CM, Zelenay P. Science, 2011, 332: 443-447 CrossRef PubMed ADS Google Scholar

[27] Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760-764 CrossRef PubMed ADS Google Scholar

[28] Wei W, Liang H, Parvez K, Zhuang X, Feng X, Müllen K. Angew Chem Int Ed, 2014, 53: 1570-1574 CrossRef PubMed Google Scholar

[29] Elumeeva K, Fechler N, Fellinger TP, Antonietti M. Mater Horiz, 2014, 1: 588-594 CrossRef Google Scholar

[30] Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Nat Commun, 2014, 5: 4973 CrossRef PubMed ADS Google Scholar

[31] Wu G, Zelenay P. Acc Chem Res, 2013, 46: 1878-1889 CrossRef PubMed Google Scholar

[32] Malko D, Kucernak A, Lopes T. J Am Chem Soc, 2016, 138: 16056-16068 CrossRef PubMed Google Scholar

[33] Ryoo R, Joo SH, Kruk M, Jaroniec M. Adv Mater, 2001, 13: 677-681 CrossRef Google Scholar

[34] Liang C, Li Z, Dai S. Angew Chem Int Ed, 2008, 47: 3696-3717 CrossRef PubMed Google Scholar

[35] Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji ARO, Kittrell C, Hauge RH, Tour JM. Nat Commun, 2012, 3: 1225 CrossRef PubMed ADS Google Scholar

[36] Lv R, Cui T, Jun MS, Zhang Q, Cao A, Su DS, Zhang Z, Yoon SH, Miyawaki J, Mochida I, Kang F. Adv Funct Mater, 2011, 21: 999-1006 CrossRef Google Scholar

[37] Huang W, Wang Y, Luo G, Wei F. Carbon, 2003, 41: 2585-2590 CrossRef Google Scholar

[38] Wen Z, Ci S, Hou Y, Chen J. Angew Chem Int Ed, 2014, 53: 6496-6500 CrossRef PubMed Google Scholar

[39] Antonietti M, Oschatz M. Adv Mater, 2018, 30: 1706836 CrossRef PubMed Google Scholar

[40] Men Y, Siebenbürger M, Qiu X, Antonietti M, Yuan J. J Mater Chem A, 2013, 1: 11887-11893 CrossRef Google Scholar

[41] Kuhn P, Thomas A, Antonietti M. Macromolecules, 2008, 42: 319-326 CrossRef ADS Google Scholar

[42] Kuhn P, Forget Á, Su D, Thomas A, Antonietti M. J Am Chem Soc, 2008, 130: 13333-13337 CrossRef PubMed Google Scholar

[43] Liu X, Fechler N, Antonietti M. Chem Soc Rev, 2013, 42: 8237-8265 CrossRef PubMed Google Scholar

[44] Lin L, Ou H, Zhang Y, Wang X. ACS Catal, 2016, 6: 3921-3931 CrossRef Google Scholar

[45] Ding Y, Tang Y, Yang L, Zeng Y, Yuan J, Liu T, Zhang S, Liu C, Luo S. J Mater Chem A, 2016, 4: 14307-14315 CrossRef Google Scholar

[46] Ahn SH, Yu X, Manthiram A. Adv Mater, 2017, 29: 1606534 CrossRef PubMed Google Scholar

[47] Zhang J, Qu L, Shi G, Liu J, Chen J, Dai L. Angew Chem Int Ed, 2015, 55: 2230-2234 CrossRef PubMed Google Scholar

[48] Yang W, Liu X, Yue X, Jia J, Guo S. J Am Chem Soc, 2015, 137: 1436-1439 CrossRef PubMed Google Scholar

[49] Song H, Yang L, Tang Y, Yan D, Liu C, Luo S. Chem Eur J, 2015, 21: 16631-16638 CrossRef PubMed Google Scholar

[50] Liu Q, Wang Y, Dai L, Yao J. Adv Mater, 2016, 28: 3000-3006 CrossRef PubMed Google Scholar

[51] Zhang J, Zhou H, Zhu J, Hu P, Hang C, Yang J, Peng T, Mu S, Huang Y. ACS Appl Mater Interfaces, 2017, 9: 24545-24554 CrossRef Google Scholar

[52] Park J, Park M, Nam G, Lee J, Cho J. Adv Mater, 2015, 27: 1396-1401 CrossRef PubMed Google Scholar

[53] Cai P, Ci S, Zhang E, Shao P, Cao C, Wen Z. Electrochim Acta, 2016, 220: 354-362 CrossRef Google Scholar

[54] Wu X, Han X, Ma X, Zhang W, Deng Y, Zhong C, Hu W. ACS Appl Mater Interfaces, 2017, 9: 12574-12583 CrossRef Google Scholar

  • Figure 1

    (a, b) SEM images, (c, d) TEM images and (g, f, h) HRTEM images of h-NNC-1150 (color online).

  • Scheme 1

    Schematic graph of preparation of h-NNC (color online).

  • Figure 2

    (a) N2 adsorption curves, (b) pore size distribution curve, (c) Raman spectroscopy, and (d) high-resolution XPS spectra of N 1s of h-NNCs (color online).

  • Figure 3

    (a) LSV curves at a scan rate of 5 mV s−1 under a rotating rate of 1600 r min−1; (b) graph of onset potential and half-wave potential; (c) Tafel plots of various h-NNCs and Pt/C catalysts in O2-saturated 0.5 M H2SO4 solution; (d) LSV curves of h-NNC-1150 at different rotating speeds (the inset is K-L plots of h-NNC-1150 at different potentials); (e) transfer electron number and H2O2 production of h-NNC and Pt/C catalysts, respectively, which were calculated from RRDE measurements; (f) current retention-time (top) and chronoamperometric responses of Pt/C and h-NNC-1150 before and after adding 5 mL methanol into 50 mL 0.5 M H2SO4 (bottom) (color online).

  • Figure 4

    (a, c) LSV curves and (b, d) Tafel plots of various ORR catalysts. (a, b) in 0.1 M PBS; (c, d) in 0.1 M KOH (color online).

  • Figure 5

    (a) Schematic graph of as-built asymmetry-electrolyte Zn-air battery (AEZAB); (b) open circuit voltage for AEZAB and conventional ZAB with h-NNC-1150 as cathode catalyst (color online).

  • Figure 6

    (a) Discharge polarization and power density curves; (b) voltage vs. specific capacities plots; (c) long term stability test for AEZAB and conventional ZAB with h-NNC-1150 as cathode catalyst, respectively (color online).