logo

Recent progress on lithium-ion batteries with high electrochemical performance

More info
  • ReceivedNov 18, 2018
  • AcceptedDec 21, 2018
  • PublishedFeb 25, 2019

Abstract

Lithium-ion batteries (LIBs) have been widely used in many fields such as portable electronics and electric vehicles since their successful commercialization in the 1990s. However, the electrochemical performance of current commercial LIBs still needs to be further improved to meet the continuously increasing demands for energy storage applications. Recently, tremendous research efforts have been made in developing next-generation LIBs with enhanced electrochemical performance. In this review, we mainly focus on the recent progress of LIBs with high electrochemical performance from four aspects, including cathode materials, anode materials, electrolyte, and separators. We discuss not only the commercial electrode materials (LiCoO2, LiFePO4, LiMn2O4, LiNixMnyCozO2, LiNixCoyAlzO2, and graphite) but also other promising next-generation materials such as Li-, Mn-rich layered oxides, organic cathode materials, Si, and Li metal. For each type of materials, we highlight their problems and corresponding strategies to enhance their electrochemical performance. Nowadays, one of the key challenges to construct high-performance LIBs is how to develop cathode materials with high capacity and working voltage. This review provides an overview and future perspectives to develop next-generation LIBs with high electrochemical performance.


Funded by

the National Programs for Nano-Key Project(2017YFA0206700)

the National Natural Science Foundation of China(21835004)

and 111 Project from the Ministry of Education of China(B12015)


Acknowledgment

This work was supported by the National Programs for Nano-Key Project (2017YFA0206700), the National Natural Science Foundation of China (21835004), and 111 Project from the Ministry of Education of China (B12015).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Whittingham MS. Science, 1976, 192: 1126-1127 CrossRef PubMed ADS Google Scholar

[2] Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. Mater Res Bull, 1980, 15: 783-789 CrossRef Google Scholar

[3] Yoshino A, Sanechika K, Nakajima T. Secondary Battery. US Patent, 4668595, 1987-05-26. Google Scholar

[4] Nishi Y. J Power Sources, 2001, 100: 101-106 CrossRef ADS Google Scholar

[5] Wei W, Xu J, Xu M, Zhang S, Guo L. Sci China Chem, 2018, 61: 515-525 CrossRef Google Scholar

[6] Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J. Chem Soc Rev, 2015, 44: 699-728 CrossRef PubMed Google Scholar

[7] Li M, Lu J, Chen Z, Amine K. Adv Mater, 2018, 30: 1800561 CrossRef PubMed Google Scholar

[8] Lu Y, Zhao Q, Miao L, Tao Z, Niu Z, Chen J. J Phys Chem C, 2017, 121: 14498-14506 CrossRef Google Scholar

[9] Olivetti EA, Ceder G, Gaustad GG, Fu X. Joule, 2017, 1: 229-243 CrossRef Google Scholar

[10] Luo Z, Liu L, Ning J, Lei K, Lu Y, Li F, Chen J. Angew Chem Int Ed, 2018, 57: 9443-9446 CrossRef PubMed Google Scholar

[11] Pillot C. Lithium ion battery raw material supply & demand 2016–2025. In: Proceedings of the AABC Europe. Mainz, 2017. Google Scholar

[12] https://chargedevs.com/newswire/uk-to-ban-new-ice-vehicles-from-2040/. Accessed on 2018-12-16. Google Scholar

[13] Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Nat Energy, 2018, 3: 267-278 CrossRef ADS Google Scholar

[14] Lu Y, Zhang Q, Li L, Niu Z, Chen J. Chem, 2018, 4: 2786-2813 CrossRef Google Scholar

[15] Lu Y, Lu Y, Niu Z, Chen J. Adv Energy Mater, 2018, 8: 1702469 CrossRef Google Scholar

[16] Zhang H, Zhao H, Khan MA, Zou W, Xu J, Zhang L, Zhang J. J Mater Chem A, 2018, 6: 20564-20620 CrossRef Google Scholar

[17] Zhou L, Zhang K, Hu Z, Tao Z, Mai L, Kang YM, Chou SL, Chen J. Adv Energy Mater, 2018, 8: 1701415 CrossRef Google Scholar

[18] Schipper F, Aurbach D. Russ J Electrochem, 2016, 52: 1095-1121 CrossRef Google Scholar

[19] Ma C, Lv Y, Li H. Energy Storage Sci Technol, 2014, 3: 53–65. Google Scholar

[20] Tang R, Yun Q, Lv W, He YB, You C, Su F, Ke L, Li B, Kang F, Yang QH. Carbon, 2016, 103: 356-362 CrossRef Google Scholar

[21] Shim JH, Lee S, Park SS. Chem Mater, 2014, 26: 2537-2543 CrossRef Google Scholar

[22] Kannan AM, Rabenberg L, Manthiram A. Electrochem Solid-State Lett, 2003, 6: A16-A18 CrossRef Google Scholar

[23] Cho J, Kim CS, Yoo SI. Electrochem Solid-State Lett, 2000, 3: 362-365 CrossRef Google Scholar

[24] Shim JH, Lee J, Han SY, Lee S. Electrochim Acta, 2015, 186: 201-208 CrossRef Google Scholar

[25] Adipranoto DS, Ishigaki T, Hoshikawa A, Iwase K, Yonemura M, Mori K, Kamiyama T, Morii Y, Hayashi M. Solid State Ion, 2014, 262: 92-97 CrossRef Google Scholar

[26] Liu Q, Su X, Lei D, Qin Y, Wen J, Guo F, Wu YA, Rong Y, Kou R, Xiao X, Aguesse F, Bareño J, Ren Y, Lu W, Li Y. Nat Energy, 2018, 3: 936-943 CrossRef ADS Google Scholar

[27] Thomas MGSR, David WIF, Goodenough JB, Groves P. Mater Res Bull, 1985, 20: 1137-1146 CrossRef Google Scholar

[28] Arai H, Okada S, Sakurai Y, Yamaki Ji. Solid State Ion, 1997, 95: 275-282 CrossRef Google Scholar

[29] Noh HJ, Youn S, Yoon CS, Sun YK. J Power Sources, 2013, 233: 121-130 CrossRef Google Scholar

[30] Xia H, Wang H, Xiao W, Lu L, Lai MO. J Alloys Compd, 2009, 480: 696-701 CrossRef Google Scholar

[31] Dixit M, Markovsky B, Schipper F, Aurbach D, Major DT. J Phys Chem C, 2017, 121: 22628-22636 CrossRef Google Scholar

[32] Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K. Nat Mater, 2009, 8: 320-324 CrossRef PubMed ADS Google Scholar

[33] Hou P, Zhang H, Zi Z, Zhang L, Xu X. J Mater Chem A, 2017, 5: 4254-4279 CrossRef Google Scholar

[34] Sun YK, Myung ST, Kim MH, Prakash J, Amine K. J Am Chem Soc, 2005, 127: 13411-13418 CrossRef PubMed Google Scholar

[35] Sun YK, Chen Z, Noh HJ, Lee DJ, Jung HG, Ren Y, Wang S, Yoon CS, Myung ST, Amine K. Nat Mater, 2012, 11: 942-947 CrossRef PubMed ADS Google Scholar

[36] Lim BB, Yoon SJ, Park KJ, Yoon CS, Kim SJ, Lee JJ, Sun YK. Adv Funct Mater, 2015, 25: 4673-4680 CrossRef Google Scholar

[37] Lim BB, Myung ST, Yoon CS, Sun YK. ACS Energy Lett, 2016, 1: 283-289 CrossRef Google Scholar

[38] Oh P, Song B, Li W, Manthiram A. J Mater Chem A, 2016, 4: 5839-5841 CrossRef Google Scholar

[39] Liu W, Li X, Xiong D, Hao Y, Li J, Kou H, Yan B, Li D, Lu S, Koo A, Adair K, Sun X. Nano Energy, 2018, 44: 111-120 CrossRef Google Scholar

[40] Schipper F, Bouzaglo H, Dixit M, Erickson EM, Weigel T, Talianker M, Grinblat J, Burstein L, Schmidt M, Lampert J, Erk C, Markovsky B, Major DT, Aurbach D. Adv Energy Mater, 2018, 8: 1701682 CrossRef Google Scholar

[41] Li W, Dolocan A, Oh P, Celio H, Park S, Cho J, Manthiram A. Nat Commun, 2017, 8: 14589 CrossRef PubMed ADS Google Scholar

[42] Kim J, Lee J, Ma H, Jeong HY, Cha H, Lee H, Yoo Y, Park M, Cho J. Adv Mater, 2018, 30: 1704309 CrossRef PubMed Google Scholar

[43] Lee KK, Yoon WS, Kim KB, Lee KY, Hong ST. J Power Sources, 2001, 97-98: 308-312 CrossRef ADS Google Scholar

[44] Xu J, Lin F, Doeff MM, Tong W. J Mater Chem A, 2017, 5: 874-901 CrossRef Google Scholar

[45] Zhou P, Meng H, Zhang Z, Chen C, Lu Y, Cao J, Cheng F, Chen J. J Mater Chem A, 2017, 5: 2724-2731 CrossRef Google Scholar

[46] Wu N, Wu H, Kim JK, Liu X, Zhang Y. ChemElectroChem, 2018, 5: 78-83 CrossRef Google Scholar

[47] Zhang Z, Zhou P, Meng H, Chen C, Cheng F, Tao Z, Chen J. J Energy Chem, 2017, 26: 481-487 CrossRef Google Scholar

[48] Qi R, Shi JL, Zhang XD, Zeng XX, Yin YX, Xu J, Chen L, Fu WG, Guo YG, Wan LJ. Sci China Chem, 2017, 60: 1230-1235 CrossRef Google Scholar

[49] Shi JL, Qi R, Zhang XD, Wang PF, Fu WG, Yin YX, Xu J, Wan LJ, Guo YG. ACS Appl Mater Interfaces, 2017, 9: 42829-42835 CrossRef Google Scholar

[50] Zhao E, Yu X, Wang F, Li H. Sci China Chem, 2017, 60: 1483-1493 CrossRef Google Scholar

[51] Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang JG. Adv Energy Mater, 2017, 7: 1601284 CrossRef Google Scholar

[52] Zheng J, Xu P, Gu M, Xiao J, Browning ND, Yan P, Wang C, Zhang JG. Chem Mater, 2015, 27: 1381-1390 CrossRef Google Scholar

[53] Sathiya M, Abakumov AM, Foix D, Rousse G, Ramesha K, Saubanère M, Doublet ML, Vezin H, Laisa CP, Prakash AS, Gonbeau D, VanTendeloo G, Tarascon JM. Nat Mater, 2015, 14: 230-238 CrossRef PubMed ADS Google Scholar

[54] Zhang J, Guo X, Yao S, Qiu X. Sci China Chem, 2016, 59: 1479-1485 CrossRef Google Scholar

[55] Ma L, Li Y, Chen Z, Zhang F, Ding P, Mao L, Lian F. ChemElectroChem, 2017, 4: 1443-1449 CrossRef Google Scholar

[56] Zhang XD, Shi JL, Liang JY, Yin YX, Guo YG, Wan LJ. Sci China Chem, 2017, 60: 1554-1560 CrossRef Google Scholar

[57] Nayak PK, Grinblat J, Levi M, Levi E, Kim S, Choi JW, Aurbach D. Adv Energy Mater, 2016, 6: 1502398 CrossRef Google Scholar

[58] Yu R, Wang X, Fu Y, Wang L, Cai S, Liu M, Lu B, Wang G, Wang D, Ren Q, Yang X. J Mater Chem A, 2016, 4: 4941-4951 CrossRef Google Scholar

[59] Zhang J, Zhang H, Gao R, Li Z, Hu Z, Liu X. Phys Chem Chem Phys, 2016, 18: 13322-13331 CrossRef PubMed ADS Google Scholar

[60] Ma S, Hou X, Li Y, Ru Q, Hu S, Lam K. J Mater Sci-Mater Electron, 2017, 28: 2705-2715 CrossRef Google Scholar

[61] Wang D, Zhang X, Xiao R, Lu X, Li Y, Xu T, Pan D, Hu YS, Bai Y. Electrochim Acta, 2018, 265: 244-253 CrossRef Google Scholar

[62] Aida T, Tsutsui Y, Kanada S, Okada J, Hayashi K, Komukai T. J Solid State Electrochem, 2017, 21: 2047-2054 CrossRef Google Scholar

[63] Padhi AK, Nanjundaswamy KS, Goodenough JB. J Electrochem Soc, 1997, 144: 1188-1194 CrossRef Google Scholar

[64] Gao L, Xu Z, Zhang S. J Alloys Compd, 2018, 739: 529-535 CrossRef Google Scholar

[65] Arnold G, Garche J, Hemmer R, Ströbele S, Vogler C, Wohlfahrt-Mehrens M. J Power Sources, 2003, 119-121: 247-251 CrossRef ADS Google Scholar

[66] Rosaiah P, Zhu J, Hussain OM, Liu Z, Qiu Y. J Electroanal Chem, 2018, 811: 1-7 CrossRef Google Scholar

[67] Wei X, Guan Y, Zheng X, Zhu Q, Shen J, Qiao N, Zhou S, Xu B. Appl Surf Sci, 2018, 440: 748-754 CrossRef ADS Google Scholar

[68] Varzi A, Bresser D, von Zamory J, Müller F, Passerini S. Adv Energy Mater, 2014, 4: 1400054 CrossRef PubMed Google Scholar

[69] Wang H, Wang R, Liu L, Jiang S, Ni L, Bie X, Yang X, Hu J, Wang Z, Chen H, Zhu L, Zhang D, Wei Y, Zhang Z, Qiu S, Pan F. Nano Energy, 2017, 39: 346-354 CrossRef Google Scholar

[70] Ma Z, Shao G, Qin X, Fan Y, Wang G, Song J, Liu T. J Power Sources, 2014, 269: 194-202 CrossRef ADS Google Scholar

[71] Wang B, Xie Y, Liu T, Luo H, Wang B, Wang C, Wang L, Wang D, Dou S, Zhou Y. Nano Energy, 2017, 42: 363-372 CrossRef Google Scholar

[72] Li S, Liu X, Liu G, Wan Y, Liu H. Ionics, 2016, 23: 19-26 CrossRef Google Scholar

[73] Li C, Zhang S, Cheng F, Ji W, Chen J. Nano Res, 2008, 1: 242-248 CrossRef Google Scholar

[74] Chung SY, Bloking JT, Chiang YM. Nat Mater, 2002, 1: 123-128 CrossRef PubMed Google Scholar

[75] Okada K, Kimura I, Machida K. RSC Adv, 2018, 8: 5848-5853 CrossRef Google Scholar

[76] Zhao H, Liu X, Zhang Z, Que D, Wu Y. Electron Compon Mater, 2013, 32: 1–6. Google Scholar

[77] Shao-Horn Y, Hackney SA, Armstrong AR, Bruce PG, Gitzendanner R, Johnson CS, Thackeray MM. J Electrochem Soc, 1999, 146: 2404-2412 CrossRef Google Scholar

[78] Thackeray MM, Johnson PJ, de Picciotto LA, Bruce PG, Goodenough JB. Mater Res Bull, 1984, 19: 179-187 CrossRef Google Scholar

[79] Ohzuku T, Kitagawa M, Hirai T. J Electrochem Soc, 1990, 137: 769-775 CrossRef Google Scholar

[80] Li G, Chen X, Liu Y, Chen Y, Yang W. RSC Adv, 2018, 8: 16753-16761 CrossRef Google Scholar

[81] Ram P, Gören A, Ferdov S, Silva MM, Singhal R, Costa CM, Sharma RK, Lanceros-Méndez S. New J Chem, 2016, 40: 6244-6252 CrossRef Google Scholar

[82] Röder P, Baba N, Wiemhöfer HD. J Power Sources, 2014, 248: 978-987 CrossRef ADS Google Scholar

[83] Kitao H, Fujihara T, Takeda K, Nakanishi N, Nohma T. Electrochem Solid-State Lett, 2005, 8: A87-A90 CrossRef Google Scholar

[84] Smith AJ, Smith SR, Byrne T, Burns JC, Dahn JR. J Electrochem Soc, 2012, 159: A1696-A1701 CrossRef Google Scholar

[85] Yang J, Zhang X, Zhu Z, Cheng F, Chen J. J Electroanal Chem, 2013, 688: 113-117 CrossRef Google Scholar

[86] Zhong Q, Bonakdarpour A, Zhang M, Gao Y, Dahn JR. J Electrochem Soc, 1997, 144: 205-213 CrossRef Google Scholar

[87] Yang S, Zhang T, Tao Z, Chen J. Acta Chim Sin, 2013, 71: 1029-1034 CrossRef Google Scholar

[88] Mou J, Deng Y, Song Z, Zheng Q, Lam KH, Lin D. Dalton Trans, 2018, 47: 7020-7028 CrossRef PubMed Google Scholar

[89] Shu X, Zhao H, Hu Y, Liu J, Tan M, Liu S, Zhang M, Ran Q, Li H, Liu X. Vacuum, 2018, 156: 1-8 CrossRef ADS Google Scholar

[90] Dawut G, Lu Y, Zhao Q, Liang J, Tao ZL, Chen J. Acta Phys-Chim Sin, 2016, 32: 1593–1603. Google Scholar

[91] Zhang K, Hu Z, Tao Z, Chen J. Sci China Mater, 2014, 57: 42-58 CrossRef Google Scholar

[92] Yang A, Wang X, Lu Y, Miao L, Xie W, Chen J. J Energy Chem, 2018, 27: 1644-1650 CrossRef Google Scholar

[93] Zhao Q, Wang J, Lu Y, Li Y, Liang G, Chen J. Angew Chem Int Ed, 2016, 55: 12528-12532 CrossRef PubMed Google Scholar

[94] Li JT, Su H, Huang L, Sun SG. Sci China Chem, 2013, 56: 992-996 CrossRef Google Scholar

[95] Deng X, Liu XR, Yan HJ, Wang D, Wan LJ. Sci China Chem, 2014, 57: 178-183 CrossRef Google Scholar

[96] Xiao Z, Han J, Xiao J, Song Q, Zhang X, Kong D, Yang QH, Zhi L. Nanoscale, 2018, 10: 10351-10356 CrossRef PubMed Google Scholar

[97] Wu Y, Wang J, Jiang K, Fan S. Front Phys, 2013, 9: 351-369 CrossRef ADS Google Scholar

[98] Zhang A, Zheng ZM, Cheng FY, Tao ZL, Chen J. Sci China Chem, 2011, 54: 936-940 CrossRef Google Scholar

[99] Zhang Y, Hu X, Xu Y, Ding M. Acta Chim Sin, 2013, 71: 1341-1353 CrossRef Google Scholar

[100] Zhou K, Fan X, Chen W, Chen F, Wei X, Li A, Liu J. Electrochim Acta, 2017, 247: 132-138 CrossRef Google Scholar

[101] Ma H, Cheng F, Chen JY, Zhao JZ, Li CS, Tao ZL, Liang J. Adv Mater, 2007, 19: 4067-4070 CrossRef Google Scholar

[102] Feng K, Li M, Liu W, Kashkooli AG, Xiao X, Cai M, Chen Z. Small, 2018, 14: 1702737 CrossRef PubMed Google Scholar

[103] Zhuang X, Song P, Chen G, Shi L, Wu Y, Tao X, Liu H, Zhang D. ACS Appl Mater Interfaces, 2017, 9: 28464-28472 CrossRef Google Scholar

[104] Zhang J, Zhang C, Liu Z, Zheng J, Zuo Y, Xue C, Li C, Cheng B. J Power Sources, 2017, 339: 86-92 CrossRef ADS Google Scholar

[105] Yin YX, Xin S, Wan LJ, Li CJ, Guo YG. Sci China Chem, 2012, 55: 1314-1318 CrossRef Google Scholar

[106] Nie P, Le Z, Chen G, Liu D, Liu X, Wu HB, Xu P, Li X, Liu F, Chang L, Zhang X, Lu Y. Small, 2018, 14: 1800635 CrossRef PubMed Google Scholar

[107] Xu Q, Sun JK, Yin YX, Guo YG. Adv Funct Mater, 2018, 28: 1705235 CrossRef Google Scholar

[108] Xu Q, Li JY, Sun JK, Yin YX, Wan LJ, Guo YG. Adv Energy Mater, 2017, 7: 1601481 CrossRef Google Scholar

[109] Liu N, Lu Z, Zhao J, McDowell MT, Lee HW, Zhao W, Cui Y. Nat Nanotech, 2014, 9: 187-192 CrossRef PubMed ADS Google Scholar

[110] Zhao J, Lu Z, Liu N, Lee HW, McDowell MT, Cui Y. Nat Commun, 2014, 5: 5088 CrossRef PubMed ADS Google Scholar

[111] Zhao J, Lee HW, Sun J, Yan K, Liu Y, Liu W, Lu Z, Lin D, Zhou G, Cui Y. Proc Natl Acad Sci USA, 2016, 113: 7408-7413 CrossRef PubMed Google Scholar

[112] Zhu Z, Wang S, Du J, Jin Q, Zhang T, Cheng F, Chen J. Nano Lett, 2014, 14: 153-157 CrossRef PubMed ADS Google Scholar

[113] Zhu X, Yuan Z, Wang X, Jiang G, Xiong J, Yuan S. Appl Surf Sci, 2018, 433: 125-132 CrossRef ADS Google Scholar

[114] Luo F, Zheng J, Chu G, Liu B, Zhang S, Li H, Chen L. Acta Chim Sin, 2015, 73: 808–814. Google Scholar

[115] Chen J, Xu L, Li W, Gou X. Adv Mater, 2005, 17: 582-586 CrossRef Google Scholar

[116] Li WY, Xu LN, Chen J. Adv Funct Mater, 2005, 15: 851-857 CrossRef Google Scholar

[117] Wang H, Zhang X. Sci China Mater, 2016, 59: 521-522 CrossRef Google Scholar

[118] Liu Z, Yu XY, Paik U. Adv Energy Mater, 2016, 6: 1502318 CrossRef Google Scholar

[119] An Q, Lv F, Liu Q, Han C, Zhao K, Sheng J, Wei Q, Yan M, Mai L. Nano Lett, 2014, 14: 6250-6256 CrossRef PubMed ADS Google Scholar

[120] Liu Y, Zhao Y, Jiao L, Chen J. J Mater Chem A, 2014, 2: 13109-13115 CrossRef Google Scholar

[121] Wang J, Zhao Q, Chen J. Chin J Chem, 2017, 35: 896-902 CrossRef Google Scholar

[122] Ju GK, Tao ZL, Chen J. Acta Phys-Chim Sin, 2017, 33: 1421–1428. Google Scholar

[123] Wang W, Song X, Gu C, Liu D, Liu J, Huang J. J Alloys Compd, 2018, 741: 223-230 CrossRef Google Scholar

[124] Lu Y, Yu L, Lou XWD. Chem, 2018, 4: 972-996 CrossRef Google Scholar

[125] Hu Z, Liu Q, Sun W, Li W, Tao Z, Chou SL, Chen J, Dou SX. Inorg Chem Front, 2016, 3: 532-535 CrossRef Google Scholar

[126] Huang Q, Wang L, Xu Z, Wang W, Bai X. Sci China Chem, 2018, 61: 222-227 CrossRef Google Scholar

[127] Lin D, Liu Y, Cui Y. Nat Nanotech, 2017, 12: 194-206 CrossRef PubMed ADS Google Scholar

[128] Wang J, Liu J, Cai Y, Cheng F, Niu Z, Chen J. ChemElectroChem, 2018, 5: 1702-1707 CrossRef Google Scholar

[129] Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q. Adv Funct Mater, 2017, 27: 1605989 CrossRef Google Scholar

[130] Liu Y, Wu J, Li H. Energy Storage Sci Technol, 2014, 3: 262–282. Google Scholar

[131] Xu K. Chem Rev, 2014, 114: 11503-11618 CrossRef PubMed Google Scholar

[132] Zhang SS. J Power Sources, 2006, 162: 1379-1394 CrossRef ADS Google Scholar

[133] Li Y, Wan S, Veith GM, Unocic RR, Paranthaman MP, Dai S, Sun XG. Adv Energy Mater, 2017, 7: 1601397 CrossRef Google Scholar

[134] Dong Y, Demeaux J, Zhang Y, Xu M, Zhou L, MacIntosh AD, Lucht BL. J Electrochem Soc, 2017, 164: A128-A136 CrossRef Google Scholar

[135] Xu M, Tsiouvaras N, Garsuch A, Gasteiger HA, Lucht BL. J Phys Chem C, 2014, 118: 7363-7368 CrossRef Google Scholar

[136] Liu S, Yang J, Wang F, Nuli Y, Wang J. Acta Chim Sin, 2009, 67: 2395–2401. Google Scholar

[137] Han JG, Park I, Cha J, Park S, Park S, Myeong S, Cho W, Kim SS, Hong SY, Cho J, Choi NS. ChemElectroChem, 2017, 4: 56-65 CrossRef Google Scholar

[138] Wang JL, Luo H, Mai YJ, Zhao XY, Zhang LZ. Sci China Chem, 2013, 56: 739-745 CrossRef Google Scholar

[139] Zhu Z, Tang Y, Lv Z, Wei J, Zhang Y, Wang R, Zhang W, Xia H, Ge M, Chen X. Angew Chem Int Ed, 2018, 57: 3656-3660 CrossRef PubMed Google Scholar

[140] Wang J, Yamada Y, Sodeyama K, Watanabe E, Takada K, Tateyama Y, Yamada A. Nat Energy, 2017, 3: 22-29 CrossRef ADS Google Scholar

[141] Sun YZ, Huang JQ, Zhao CZ, Zhang Q. Sci China Chem, 2017, 60: 1508-1526 CrossRef Google Scholar

[142] Lu Y, Li L, Zhang Q, Niu Z, Chen J. Joule, 2018, 2: 1747-1770 CrossRef Google Scholar

[143] Liu W, Lee SW, Lin D, Shi F, Wang S, Sendek AD, Cui Y. Nat Energy, 2017, 2: 17035 CrossRef ADS Google Scholar

[144] https://www.reuters.com/article/us-toyota-electric-cars/toyota-set-to-sell-long-range-fast-charging-electric-cars-in-2022-paper-idUSKBN1AA035. Accessed on 2018-12-16. Google Scholar

[145] Arora P, Zhang Z(J). Chem Rev, 2004, 104: 4419-4462 CrossRef Google Scholar

[146] Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X. Energy Environ Sci, 2014, 7: 3857-3886 CrossRef Google Scholar

[147] Li W, Li X, Yuan A, Xie X, Xia B. Ionics, 2016, 22: 2143-2149 CrossRef Google Scholar

[148] Lei D, Benson J, Magasinski A, Berdichevsky G, Yushin G. Science, 2017, 355: 267-271 CrossRef PubMed ADS Google Scholar

[149] Liu W, Chen J, Chen Z, Liu K, Zhou G, Sun Y, Song MS, Bao Z, Cui Y. Adv Energy Mater, 2017, 7: 1701076 CrossRef Google Scholar

  • Figure 1

    (a) Schematic illustration and redox mechanism during discharge/charge processes of representative LIBs with LiCoO2 cathode and graphite anode. (b) The global demands and main applications of LIBs in 2016 and 2025 [11]. (c) Cost distributions of different components in LIBs, including cathode, anode, electrolyte, separator, and other materials [11] (color online).

  • Figure 2

    The total production and market shares of different cathode active materials for LIBs in 2016 and 2025 (assumption: Tesla still uses NCA as cathode materials and have a relative success) [11]. LFP: LiFePO4; LCO: LiCoO2; NMC: LiNixMnyCozO2; NCA: LiNixCoyAlzO2; LMO: LiMn2O4 (color online).

  • Figure 3

    Crystal structure of (a) LCO and (b) D-LCO. (c) Charge/discharge curves of D-LCO at C/10 [26]. (d) Cycling and rate performance of D-LCO and P-LCO. (b–d) Reprinted with permission from Ref. [26], copyright 2018, Nature Publishing Group (color online).

  • Figure 4

    (a) Crystal structure of NMC111. (b) The relationship between discharge capacity and thermal stability (as well as capacity retention) of different NMC. (c) The structural illustration and atomic ratio of synthesized FCG NMC. (d) Differential scanning calorimetry curves of the FCG NMC, IC, and OC (all tested at delithiated state). (e) Illustration and corresponding scanning electron microscopy images of LiNi0.7Co0.15Mn0.15O2 sample with pristine state and after exposed to air for 3 months. (f) Schematic diagram of SEI on the surface of LiNi0.7Co0.15Mn0.15O2 cathode. (a) Reprinted with permission from Ref. [30], copyright 2009, Elsevier. (b) Reprinted with permission from Ref. [29], copyright 2013, Elsevier. (c, d) Reprinted with permission from Ref. [35], copyright 2012, Nature Publishing Group. (e) Reprinted with permission from Ref. [38], copyright 2016, The Royal Society of Chemistry. (f) Reprinted with permission from Ref. [41], copyright 2017, Nature Publishing Group (color online).

  • Figure 5

    (a) Crystal structure of layered Li-rich Li2MnO3. (b) Charge/discharge curve evolution of Li1.2Ni0.2Mn0.6O2 (the inset is the corresponding transformation). (c) Cycling performance of pristine Li1.2Ni0.13Co0.13Mn0.54O2 and Sn2+-doped Li1.2Ni0.125Co0.125Mn0.52Sn0.03O2. (d) Schematic diagram for the preparation of LNMO@LBP [55]. The corresponding high-resolution transmission electron microscope (TEM) images of LNMO (e) and LNMO@LBP (f). (g) Rate performance of LNMO and LNMO@LBP (with 0.8 or 1.6 mol% LBP). (b) Reprinted with permission from Ref. [52], copyright 2015, American Chemical Society. (c) Reprinted with permission from Ref. [56], copyright 2017, Science China Press and Springer-Verlag Berlin Heidelberg. (d–g) Reprinted with permission from Ref. [55], copyright 2017, Wiley-VCH (color online).

  • Figure 6

    (a) Crystal structure of olivine LFP. (b) Schematic illustration for the preparation of LFP/rGO composite. (c) Rate performance of LFP/rGO composite. (d) Average discharge capacity of LFP samples with different amounts of Ce coating. (e) Rate performance of G/LFP@C and G/LFP-QDs@C from 0.3 to 200 C. (f) The calculated density of states of pure LFP and Zr, Co co-doped LFP. (b, c) Reprinted with permission from Ref. [66], copyright 2018, Elsevier. (d) Reprinted with permission from Ref. [70], copyright 2014, Elsevier. (e) Reprinted with permission from Ref. [71], copyright 2017, Elsevier. (f) Reprinted with permission from Ref. [64], copyright 2017, Elsevier (color online).

  • Figure 7

    (a) Crystal structure of spinel LMO. (b) Cycling performance of pristine LMO and LMO with different amounts of ZrO2 coating at 55 °C. (c) Initial charge/discharge profiles of LMNO and LMNO with different amounts of Li2SnO3 coating. (b) Reprinted with permission from Ref. [80], copyright 2018, The Royal Society of Chemistry. (c) Reprinted with permission from Ref. [88], copyright 2018, The Royal Society of Chemistry (color online).

  • Figure 8

    (a) The market share of different commercial anode materials in 2016 [11]. (b) Schematic diagram for the preparation of LTO/N-doped C composite. (c) Rate performance of LTO and LTO/N-doped C composite. (b, c) Reprinted with permission from Ref. [100], copyright 2017, Elsevier (color online).

  • Figure 9

    (a) Schematic illustration for the preparation and (b) TEM image of Si@graphene cage composite (the inset of (b) is SAED). (c) Schematic illustration for the preparation of LixSi-Li2O core-shell NPs and their application in Si NPs and graphite. (d) The initial discharge/charge curves and corresponding Coulombic efficiency of MCMB graphite with different amounts of LixSi-Li2O NPs additive. (a, b) Reprinted with permission from Ref. [106], copyright 2018, Wiley-VCH. (c, d) Reprinted with permission from Ref. [110], copyright 2014, Nature Publishing Group (color online).

  • Figure 10

    (a) The formation mechanism of SEI on MoS2 anode without and with 10 wt% FEC additive. (b) Cycling performance of MoS2|NMC523 batteries without and with 10 wt% FEC additive. (c) The insertion behaviour of cations into carbonaceous anode in different electrolytes. Cations (red), anions (green), esters solvent (yellow), non-flammable solvent (blue), salt-derived SEI (green film). (d) Selected discharge/charge profiles of Li-graphite half-cells with concentrated 5.3  mol L−1 LiN(SO2F)2/TMP as electrolyte. (a, b) Reprinted with permission from Ref. [139], copyright 2018, Wiley-VCH. (c, d) Reprinted with permission from Ref. [140], copyright 2017, Nature Publishing Group (color online).

  • Figure 11

    The energy density of different batteries based on Li chemistry (color online).

  • Table 1   Summary on structures, redox mechanisms, working potentials, and theoretical capacities of representative electrode materials for LIBs

    Electrodes

    Materials

    Structure

    (type)

    Redox mechanism

    Potential (V) a)

    Capacity(mA h g–1) b)

    Commercia-lization c)

    Cathode

    LiCoO2

    Layered

    LiCoO2↔CoO2+Li++e

    3.7

    274

    Y

    LiFePO4

    Olivine

    LiFePO4↔FePO4+Li++e

    3.45

    170

    Y

    LiMn2O4

    Spinel

    LiMn2O4↔2MnO2+Li++e

    4.0

    148

    Y

    LiNi1/3Mn1/3Co1/3O2

    Layered

    LiNi1/3Mn1/3Co1/3O2↔Ni1/3Mn1/3Co1/3O2+Li++e

    3.6

    277

    Y

    LiNi0.80Co0.15Al0.05O2

    Layered

    LiNi0.80Co0.15Al0.05O2↔Ni0.80Co0.15Al0.05O2+Li++e

    3.6

    278

    Y

    Li1.2Ni0.2Mn0.6O2

    Layered

    Li1.2Ni0.2Mn0.6O2↔Ni0.2Mn0.6O2+1.2Li++1.2e

    3.5

    378

    N

    LiMn1.5Ni0.5O4

    Spinel

    LiMn1.5Ni0.5O4↔Mn1.5Ni0.5O4+Li++e

    4.7

    146

    N

    1,4-benzoquinone

    Organic

    C6H4O2+2Li++2e↔Li2C6H4O2

    2.7

    496

    N

    Anode

    Graphite

    Insertion

    6C+Li++e↔LiC6

    0.1

    372

    Y

    Li4Ti5O12

    Insertion

    Li4Ti5O12+3Li++3e↔Li7Ti5O12

    1.55

    175

    Y

    Si

    Alloying

    Si+4.4Li++4.4e↔Li4.4Si

    0.25

    4212

    Y

    Sn

    Alloying

    Sn+4.4Li++4.4e↔Li4.4Sn

    0.6

    994

    N

    P

    Alloying

    P+3Li++3e↔Li3P

    0.5

    2594

    N

    Co3O4

    Conversion

    Co3O4+8Li++8e↔3Co+4Li2O

    0.9

    890

    N

    Li

    Stripping/plating

    Li↔Li++e

    0

    3860

    N

    Average discharge voltage (vs. Li+/Li); b) theoretical capacity; c) Y (N) represents the electrode materials have (not) been commercialized nowadays.

  • Table 2   Summary on common salts of electrolyte in LIBs

    Salts

    LiPF6

    LiClO4

    LiBF4

    LiAsF6

    LiN(SO2F)2

    LiN(SO2CF3)2

    H2O sensitivity a)

    Y

    N

    Y

    Y

    Y

    Y

    Al corrosion a)

    N

    N

    N

    N

    Y

    Y

    Ionic conductivity (mS cm–1) b)

    10.0

    9.0

    4.5

    11.1 c)

    10.4 c)

    6.2

    Y and N represents yes and no, respectively; the ionic conductivity of 1 mol L−1 salt dissolved in EC/DMC at b) 20 °C, and c) 25 °C.

  • Table 3   Summary on common solvents of electrolyte in LIBs

    Measured at 25 °C; b) measured at 40 °C; c) measured at 20 °C.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号