logo

Flexible ITO-free organic solar cells over 10% by employing drop-coated conductive PEDOT:PSS transparent anodes

More info
  • ReceivedDec 18, 2018
  • AcceptedJan 22, 2019
  • PublishedFeb 22, 2019

Abstract

Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonic acid) (PEDOT:PSS) has been explored to fabricate flexible and stretchable conductors. Generally, PEDOT:PSS transparent anodes are prepared by spin-coating method. In this article, we adopt a method by dropping PEDOT:PSS aqueous solution on the PET plastic substrate to fabricate flexible electrodes. Compared with spin coating, drop-coating is simple and cost-effective with large-area fabrications. Through this method, we fabricated highly transparent conductive electrodes and systematically studied their electrical, optical, morphological and mechanical properties. With dimethyl sulfoxide/methanesulfonic acid (DMSO/MSA) treated PEDOT:PSS electrode, bendable devices based on non-fullerene system displayed an open-circuit voltage of 0.925 V, a fill factor of 70.74%, and a high power conversion efficiency (PCE) of 10.23% under 100 mW cm−2 illumination, which retained over 80% of the initial PCE value after 1000 bending cycles. Based on the findings, drop-coated PEDOT:PSS electrodes exhibited high suitability for the development of large-area and high-efficiency printed solar cell modules in the future.


Funded by

the National Key R&D Program of China(2017YFE0106000)

the National Natural Science Foundation of China(51773212,21574144,21674123,61705240)

Zhejiang Provincial Natural Science Foundation of China(LR16B040002)

Ningbo Municipal Science and Technology Innovative Research Team(2015B11002,2016B10005)

CAS Interdisciplinary Innovation Team

CAS Key Project of Frontier Science Research(QYZDBSSW-SYS030)

and CAS Key Project of International Cooperation(174433KYSB20160065)


Acknowledgment

This work was supported by the National Key R&D Program of China (2017YFE0106000), the National Natural Science Foundation of China (51773212, 21574144, 21674123, 61705240), Zhejiang Provincial Natural Science Foundation of China (LR16B040002), Ningbo Municipal Science and Technology Innovative Research Team (2015B11002, 2016B10005), CAS Interdisciplinary Innovation Team, CAS Key Project of Frontier Science Research (QYZDBSSW-SYS030), and CAS Key Project of International Cooperation (174433KYSB20160065).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

Supporting Information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Sun H, Liu S, Lin W, Zhang KY, Lv W, Huang X, Huo F, Yang H, Jenkins G, Zhao Q, Huang W. Nat Commun, 2014, 5: 3601-3609 CrossRef PubMed ADS Google Scholar

[2] An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. Nat Mater, 2015, 14: 685-690 CrossRef PubMed ADS Google Scholar

[3] Li D, Lai WY, Zhang YZ, Huang W. Adv Mater, 2018, 30: 1704738 CrossRef PubMed Google Scholar

[4] Chun KY, Oh Y, Rho J, Ahn JH, Kim YJ, Choi HR, Baik S. Nat Nanotech, 2010, 5: 853-857 CrossRef PubMed ADS Google Scholar

[5] Rowell MW, Topinka MA, McGehee MD, Prall HJ, Dennler G, Sariciftci NS, Hu L, Gruner G. Appl Phys Lett, 2006, 88: 233506 CrossRef ADS Google Scholar

[6] Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q. ACS Appl Mater Interfaces, 2010, 2: 3572-3577 CrossRef PubMed Google Scholar

[7] Seo JH, Hwang I, Um HD, Lee S, Lee K, Park J, Shin H, Kwon TH, Kang SJ, Seo K. Adv Mater, 2017, 29: 1701479 CrossRef PubMed Google Scholar

[8] Wang BY, Yoo TH, Lim JW, Sang BI, Lim DS, Choi WK, Hwang DK, Oh YJ. Small, 2015, 11: 1905-1911 CrossRef PubMed Google Scholar

[9] Leem DS, Edwards A, Faist M, Nelson J, Bradley DDC, de Mello JC. Adv Mater, 2011, 23: 4371-4375 CrossRef PubMed Google Scholar

[10] Liu Z, Li J, Yan F. Adv Mater, 2013, 25: 4296-4301 CrossRef PubMed Google Scholar

[11] An T, Cheng W. J Mater Chem A, 2018, 6: 15478-15494 CrossRef Google Scholar

[12] Park H, Chang S, Zhou X, Kong J, Palacios T, Gradečak S. Nano Lett, 2014, 14: 5148-5154 CrossRef PubMed ADS Google Scholar

[13] Song W, Fan X, Xu B, Yan F, Cui H, Wei Q, Peng R, Hong L, Huang J, Ge Z. Adv Mater, 2018, 30: 1800075 CrossRef PubMed Google Scholar

[14] Fan X, Wang J, Wang H, Liu X, Wang H. ACS Appl Mater Interfaces, 2015, 7: 16287-16295 CrossRef Google Scholar

[15] Zhang X, Wu J, Wang J, Zhang J, Yang Q, Fu Y, Xie Z. Sol Energy Mater Sol Cells, 2016, 144: 143-149 CrossRef Google Scholar

[16] Fan X, Xu B, Liu S, Cui C, Wang J, Yan F. ACS Appl Mater Interfaces, 2016, 8: 14029-14036 CrossRef Google Scholar

[17] Ouyang J. ACS Appl Mater Interfaces, 2013, 5: 13082-13088 CrossRef PubMed Google Scholar

[18] Andrei V, Bethke K, Madzharova F, Beeg S, Knop-Gericke A, Kneipp J, Rademann K. Adv Electron Mater, 2017, 3: 1600473 CrossRef Google Scholar

[19] Cho C, Wallace KL, Tzeng P, Hsu JH, Yu C, Grunlan JC. Adv Energy Mater, 2016, 6: 1502168 CrossRef Google Scholar

[20] Palumbiny CM, Liu F, Russell TP, Hexemer A, Wang C, Müller-Buschbaum P. Adv Mater, 2015, 27: 3391-3397 CrossRef PubMed Google Scholar

[21] Fan Z, Li P, Du D, Ouyang J. Adv Energy Mater, 2017, 7: 1602116 CrossRef Google Scholar

[22] Kim S, Sanyoto B, Park WT, Kim S, Mandal S, Lim JC, Noh YY, Kim JH. Adv Mater, 2016, 28: 10149-10154 CrossRef PubMed Google Scholar

[23] Hsiao YS, Whang WT, Chen CP, Chen YC. J Mater Chem, 2008, 18: 5948-5955 CrossRef Google Scholar

[24] Kim WH, Mäkinen AJ, Nikolov N, Shashidhar R, Kim H, Kafafi ZH. Appl Phys Lett, 2002, 80: 3844-3846 CrossRef ADS Google Scholar

[25] Alemu D, Wei HY, Ho KC, Chu CW. Energy Environ Sci, 2012, 5: 9662-9671 CrossRef Google Scholar

[26] Kim YH, Sachse C, Machala ML, May C, Müller-Meskamp L, Leo K. Adv Funct Mater, 2011, 21: 1076-1081 CrossRef Google Scholar

[27] Jäckle S, Liebhaber M, Niederhausen J, Büchele M, Félix R, Wilks RG, Bär M, Lips K, Christiansen S. ACS Appl Mater Interfaces, 2016, 8: 8841-8848 CrossRef Google Scholar

[28] Min X, Jiang F, Qin F, Li Z, Tong J, Xiong S, Meng W, Zhou Y. ACS Appl Mater Interfaces, 2014, 6: 22628-22633 CrossRef PubMed Google Scholar

[29] van de Wiel HJ, Galagan Y, van Lammeren TJ, de Riet JFJ, Gilot J, Nagelkerke MGM, Lelieveld RHCAT, Shanmugam S, Pagudala A, Hui D, Groen WA. Nanotechnology, 2013, 24: 484014 CrossRef PubMed ADS Google Scholar

[30] Krebs FC. Sol Energy Mater Sol Cells, 2009, 93: 394-412 CrossRef Google Scholar

[31] Tang A, Zhan C, Yao J, Zhou E. Adv Mater, 2017, 29: 1600013 CrossRef PubMed Google Scholar

[32] Tang A, Xiao B, Wang Y, Gao F, Tajima K, Bin H, Zhang ZG, Li Y, Wei Z, Zhou E. Adv Funct Mater, 2018, 28: 1704507 CrossRef Google Scholar

[33] Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170-1174 CrossRef PubMed Google Scholar

[34] Geng Y, Tang A, Tajima K, Zeng Q, Zhou E. J Mater Chem A, 2019, 7: 64-96 CrossRef Google Scholar

[35] Worfolk BJ, Andrews SC, Park S, Reinspach J, Liu N, Toney MF, Mannsfeld SCB, Bao Z. Proc Natl Acad Sci USA, 2015, 112: 14138-14143 CrossRef PubMed ADS Google Scholar

[36] Kim N, Kang H, Lee JH, Kee S, Lee SH, Lee K. Adv Mater, 2015, 27: 2317-2323 CrossRef PubMed Google Scholar

  • Figure 1

    Transmission spectra of the drop-coated PEDOT:PSS films on glass substrates (color online).

  • Scheme 1

    Schematic illustration for the PEDOT:PSS FTEs via drop coating techniques (color online).

  • Figure 2

    Atomic force microscope phase images of PEDOT:PSS films on glass substrates. (a) Pristine films; (b) MSA-treated films; (c) DMSO-treated films; (d) DMSO/MSA-treated films; (e) EG-treated films; (f) EG/MSA-treated films. Scale bar: 2 µm×2 µm (color online).

  • Figure 3

    XPS S (2p) spectra of pristine film and DMSO/MSA-treated PEDOT:PSS film (color online).

  • Figure 4

    (a) Schematic diagram of the bendable OSC devices. (b) J-V curves of all flexible OSC devices with the drop-coated PEDOT:PSS FTEs. (c) J-V curves of flexible OSC devices with the spin-coated PEDOT:PSS film treated by DMSO/MSA and the drop-coated PEDOT:PSS film treated by DMSO/MSA. (d) Decays of normalized PCEs of flexible devices as a function of the bending times (color online).

  • Table 1   FoM parameters of PEDOT:PSS films

    Film

    Transmission at 550 nm

    Rsq

    FoM

    (%)

    (Ω/sq)

    DMSO

    93.68

    124.5

    45.63

    EG

    94.39

    148.3

    43.47

    MSA

    93.54

    111

    50.42

    DMSO+MSA

    94.88

    110

    64.35

    EG+MSA

    94.35

    105.4

    60.61

  • Table 2   Photovoltaic performance of rigid (glass substrate) and flexible (PET substrate) devices based on PEDOT:PSS or ITO and deposited through spin-coating or drop-coating method

    Device

    Voc (V)

    Jsc(mA/cm2)

    FF (%)

    PCE (ave.) (%)

    Rsq(Ω cm2)

    ITO (110 nm) (Glass)c)

    0.937

    16.83

    70.10

    11.06 (10.95)

    4.58

    DMSO/MSA (PET)c)

    0.930

    15.47

    72.63

    10.45 (10.22)

    6.04

    DMSO/MSA (PET)b)

    0.925

    15.64

    70.74

    10.23 (10.08)

    5.06

    EG/MSA (PET)b)

    0.928

    15.22

    68.13

    9.63 (9.58)

    6.67

    MSA (PET)b)

    0.926

    14.70

    68.43

    9.32 (9.19)

    7.41

    DMSO (PET)b)

    0.913

    14.07

    68.40

    8.79 (8.73)

    5.86

    EG (PET)b)

    0.912

    13.74

    69.42

    8.70 (8.65)

    5.65

    ITO (185 nm) (PET)c)

    0.911

    13.92

    61.83

    7.84 (7.62)

    6.85

    All devices with 0.04 cm2 effective area; b) drop-coated films; c) spin-coated.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号