logo

Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction

More info
  • ReceivedDec 31, 2018
  • AcceptedFeb 12, 2019
  • PublishedMar 4, 2019

Abstract


Funded by

the National Natural Science Foundation of China(51825201)

the National Key Research and Development Program of China(2017YFA0206701)

the National Program for Support of Top-notch Young Professionals

and Changjiang Scholar Program.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51825201), the National Key Research and Development Program of China (2017YFA0206701), the National Program for Support of Top-notch Young Professionals, and Changjiang Scholar Program.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Chem Soc Rev, 2015, 44: 2060-2086 CrossRef PubMed Google Scholar

[2] Guan BY, Yu XY, Wu HB, Lou XWD. Adv Mater, 2017, 29: 1703614 CrossRef PubMed Google Scholar

[3] Gupta S, Zhao S, Wang XX, Hwang S, Karakalos S, Devaguptapu SV, Mukherjee S, Su D, Xu H, Wu G. ACS Catal, 2017, 7: 8386-8393 CrossRef Google Scholar

[4] Cheng Q, Han S, Mao K, Chen C, Yang L, Zou Z, Gu M, Hu Z, Yang H. Nano Energy, 2018, 52: 485-493 CrossRef Google Scholar

[5] Stevens MB, Enman LJ, Batchellor AS, Cosby MR, Vise AE, Trang CDM, Boettcher SW. Chem Mater, 2016, 29: 120-140 CrossRef Google Scholar

[6] Zhang L, Doyle-Davis K, Sun XL. Energy Environ Sci, 2019, https://doi.org/10.1039/c8ee02939c. Google Scholar

[7] Qian Y, Khan IA, Zhao D. Small, 2017, 13: 1701143 CrossRef PubMed Google Scholar

[8] Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. Science, 2013, 341: 1230444 CrossRef PubMed Google Scholar

[9] Zhang X, Chen A, Zhong M, Zhang ZH, Zhang X, Zhou Z, Bu XH. Electrochem Energy Rev, 2018, https://doi.org/10.1007/s41918-018-0024-x. Google Scholar

[10] Zhao Y, Song Z, Li X, Sun Q, Cheng N, Lawes S, Sun X. Energy Storage Mater, 2016, 2: 35-62 CrossRef Google Scholar

[11] Gao M, Liu X, Yang H, Yu Y. Sci China Chem, 2018, 61: 1151-1158 CrossRef Google Scholar

[12] Song Z, Cheng N, Lushington A, Sun X. Catalysts, 2016, 6: 116 CrossRef Google Scholar

[13] Xia W, Mahmood A, Zou R, Xu Q. Energy Environ Sci, 2015, 8: 1837-1866 CrossRef Google Scholar

[14] Zhang K, Qu C, Liang Z, Gao S, Zhang H, Zhu B, Meng W, Fu E, Zou R. ACS Appl Mater Interfaces, 2018, 10: 30460-30469 CrossRef Google Scholar

[15] Yi FY, Zhang R, Wang H, Chen LF, Han L, Jiang HL, Xu Q. Small Methods, 2017, 1: 1700187 CrossRef Google Scholar

[16] Huang ZF, Wang J, Peng Y, Jung CY, Fisher A, Wang X. Adv Energy Mater, 2017, 7: 1700544 CrossRef Google Scholar

[17] Yeager E. J Mol Catal, 1986, 38: 5-25 CrossRef Google Scholar

[18] Sánchez-Sánchez CM, Bard AJ. Anal Chem, 2009, 81: 8094-8100 CrossRef PubMed Google Scholar

[19] Song CJ, Zhang JJ. PEM Fuel Cell Electrocatalysts and Catalyst Layers. Heidelberg: Springer, 2008. 89–134. Google Scholar

[20] Yu L, Pan X, Cao X, Hu P, Bao X. J Catal, 2011, 282: 183-190 CrossRef Google Scholar

[21] Morozan A, Jousselme B, Palacin S. Energy Environ Sci, 2011, 4: 1238-1254 CrossRef Google Scholar

[22] Shao M, Chang Q, Dodelet JP, Chenitz R. Chem Rev, 2016, 116: 3594-3657 CrossRef PubMed Google Scholar

[23] Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H. J Phys Chem B, 2004, 108: 17886-17892 CrossRef Google Scholar

[24] Man IC, Su HY, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J. ChemCatChem, 2011, 3: 1159-1165 CrossRef Google Scholar

[25] Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. ChemCatChem, 2010, 2: 724-761 CrossRef Google Scholar

[26] Trasatti S. Electrochim Acta, 1984, 29: 1503-1512 CrossRef Google Scholar

[27] Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y. Science, 2011, 334: 1383-1385 CrossRef PubMed ADS Google Scholar

[28] Cho K, Han SH, Suh MP. Angew Chem Int Ed, 2016, 55: 15301-15305 CrossRef PubMed Google Scholar

[29] Decoste JB, Peterson GW, Smith MW, Stone CA, Willis CR. J Am Chem Soc, 2012, 134: 1486-1489 CrossRef PubMed Google Scholar

[30] Usov PM, Huffman B, Epley CC, Kessinger MC, Zhu J, Maza WA, Morris AJ. ACS Appl Mater Interfaces, 2017, 9: 33539-33543 CrossRef Google Scholar

[31] Mao J, Yang L, Yu P, Wei X, Mao L. Electrochem Commun, 2012, 19: 29-31 CrossRef Google Scholar

[32] Jiang M, Li L, Zhu D, Zhang H, Zhao X. J Mater Chem A, 2014, 2: 5323-5329 CrossRef Google Scholar

[33] Sohrabi S, Dehghanpour S, Ghalkhani M. ChemCatChem, 2016, 8: 2356-2366 CrossRef Google Scholar

[34] Jahan M, Bao Q, Loh KP. J Am Chem Soc, 2012, 134: 6707-6713 CrossRef PubMed Google Scholar

[35] Wang H, Yin F, Chen B, Li G. J Mater Chem A, 2015, 3: 16168-16176 CrossRef Google Scholar

[36] Banham D, Feng F, Pei K, Ye S, Birss V. J Mater Chem A, 2013, 1: 2812-2820 CrossRef Google Scholar

[37] Zhang L, Su Z, Jiang F, Yang L, Qian J, Zhou Y, Li W, Hong M. Nanoscale, 2014, 6: 6590-6602 CrossRef PubMed ADS Google Scholar

[38] Zhong H, Wang J, Zhang Y, Xu W, Xing W, Xu D, Zhang Y, Zhang X. Angew Chem Int Ed, 2014, 53: 14235-14239 CrossRef PubMed Google Scholar

[39] Song Z, Liu W, Cheng N, Norouzi Banis M, Li X, Sun Q, Xiao B, Liu Y, Lushington A, Li R, Liu L, Sun X. Mater Horiz, 2017, 4: 900-907 CrossRef Google Scholar

[40] Wu M, Li C, Zhao J, Ling Y, Liu R. Dalton Trans, 2018, 47: 7812-7818 CrossRef PubMed Google Scholar

[41] Wang Y, Tao L, Xiao Z, Chen R, Jiang Z, Wang S. Adv Funct Mater, 2018, 28: 1705356 CrossRef Google Scholar

[42] Qian Y, An T, Birgersson KE, Liu Z, Zhao D. Small, 2018, 14: 1704169 CrossRef PubMed Google Scholar

[43] Xuan C, Hou B, Xia W, Peng Z, Shen T, Xin HL, Zhang G, Wang D. J Mater Chem A, 2018, 6: 10731-10739 CrossRef Google Scholar

[44] Wu M, Wang K, Yi M, Tong Y, Wang Y, Song S. ACS Catal, 2017, 7: 6082-6088 CrossRef Google Scholar

[45] Shi PC, Yi JD, Liu TT, Li L, Zhang LJ, Sun CF, Wang YB, Huang YB, Cao R. J Mater Chem A, 2017, 5: 12322-12329 CrossRef Google Scholar

[46] Chung DY, Lee KJ, Yu SH, Kim M, Lee SY, Kim OH, Park HJ, Sung YE. Adv Energy Mater, 2015, 5: 1401309 CrossRef Google Scholar

[47] Ye L, Chai G, Wen Z. Adv Funct Mater, 2017, 27: 1606190 CrossRef Google Scholar

[48] Kim IT, Shin S, Shin MW. Carbon, 2018, 135: 35-43 CrossRef Google Scholar

[49] Zhang P, Sun F, Xiang Z, Shen Z, Yun J, Cao D. Energy Environ Sci, 2014, 7: 442-450 CrossRef Google Scholar

[50] Pandiaraj S, Aiyappa HB, Banerjee R, Kurungot S. Chem Commun, 2014, 50: 3363-3366 CrossRef PubMed Google Scholar

[51] Xia W, Zhu J, Guo W, An L, Xia D, Zou R. J Mater Chem A, 2014, 2: 11606-11613 CrossRef Google Scholar

[52] You B, Jiang N, Sheng M, Drisdell WS, Yano J, Sun Y. ACS Catal, 2015, 5: 7068-7076 CrossRef Google Scholar

[53] Song X, Guo L, Liao X, Liu J, Sun J, Li X. Small, 2017, 13: 1700238 CrossRef PubMed Google Scholar

[54] Ahn SH, Klein MJ, Manthiram A. Adv Energy Mater, 2017, 7: 1601979 CrossRef Google Scholar

[55] Wan X, Wu R, Deng J, Nie Y, Chen S, Ding W, Huang X, Wei Z. J Mater Chem A, 2018, 6: 3386-3390 CrossRef Google Scholar

[56] Li Z, Shao M, Zhou L, Yang Q, Zhang C, Wei M, Evans DG, Duan X. Nano Energy, 2016, 25: 100-109 CrossRef Google Scholar

[57] Wang R, Yan T, Han L, Chen G, Li H, Zhang J, Shi L, Zhang D. J Mater Chem A, 2018, 6: 5752-5761 CrossRef Google Scholar

[58] Niu Q, Guo J, Chen B, Nie J, Guo X, Ma G. Carbon, 2017, 114: 250-260 CrossRef Google Scholar

[59] Zhang J, Wu C, Huang M, Zhao Y, Li J, Guan L. ChemCatChem, 2018, 10: 1336-1343 CrossRef Google Scholar

[60] Jasinski R. Nature, 1964, 201: 1212-1213 CrossRef Google Scholar

[61] You S, Gong X, Wang W, Qi D, Wang X, Chen X, Ren N. Adv Energy Mater, 2016, 6: 1501497 CrossRef Google Scholar

[62] Peera SG, Balamurugan J, Kim NH, Lee JH. Small, 2018, 14: 1800441 CrossRef PubMed Google Scholar

[63] Collman JP, Devaraj NK, Decréau RA, Yang Y, Yan YL, Ebina W, Eberspacher TA, Chidsey CED. Science, 2007, 315: 1565-1568 CrossRef PubMed ADS Google Scholar

[64] Xiao M, Zhang H, Chen Y, Zhu J, Gao L, Jin Z, Ge J, Jiang Z, Chen S, Liu C, Xing W. Nano Energy, 2018, 46: 396-403 CrossRef Google Scholar

[65] Wang X, Zhang H, Lin H, Gupta S, Wang C, Tao Z, Fu H, Wang T, Zheng J, Wu G, Li X. Nano Energy, 2016, 25: 110-119 CrossRef Google Scholar

[66] Lai Q, Zheng L, Liang Y, He J, Zhao J, Chen J. ACS Catal, 2017, 7: 1655-1663 CrossRef Google Scholar

[67] Li G, Zhang J, Li W, Fan K, Xu C. Nanoscale, 2018, 10: 9252-9260 CrossRef PubMed Google Scholar

[68] Zhang H, Hwang S, Wang M, Feng Z, Karakalos S, Luo L, Qiao Z, Xie X, Wang C, Su D, Shao Y, Wu G. J Am Chem Soc, 2017, 139: 14143-14149 CrossRef PubMed Google Scholar

[69] Wang XX, Cullen DA, Pan YT, Hwang S, Wang M, Feng Z, Wang J, Engelhard MH, Zhang H, He Y, Shao Y, Su D, More KL, Spendelow JS, Wu G. Adv Mater, 2018, 30: 1706758 CrossRef PubMed Google Scholar

[70] Li JZ, Chen MJ, Cullen DA, Hwang S, Wang MY, Li BY, Liu KX, Karakalos S, Lucero M, Zhang HG, Lei C, Xu H, Sterbinsky GE, Feng ZX, Su D, More KL, Wang GF, Wang ZB, Wu G. Nat Catal, 2018, https://doi.org/10.1038/s41929-018-0164-8. Google Scholar

[71] Duan J, Chen S, Zhao C. Nat Commun, 2017, 8: 15341 CrossRef PubMed ADS Google Scholar

[72] Hai G, Jia X, Zhang K, Liu X, Wu Z, Wang G. Nano Energy, 2018, 44: 345-352 CrossRef Google Scholar

[73] Zhao SL, Wang Y, Dong JC, He CT, Yin HJ, An PF, Zhao K, Zhang XF, Gao C, Zhang LJ, Lv JW, Wang JX, Zhang JQ, Khattak AM, Khan NA, Wei ZX, Zhang J, Liu SQ, Zhao HJ, Tang ZY. Nat Energy, 2016, 1: 16184. Google Scholar

[74] Li FL, Shao Q, Huang X, Lang JP. Angew Chem Int Ed, 2018, 57: 1888-1892 CrossRef PubMed Google Scholar

[75] Xu Y, Tu W, Zhang B, Yin S, Huang Y, Kraft M, Xu R. Adv Mater, 2017, 29: 1605957 CrossRef PubMed Google Scholar

[76] Sun H, Lian Y, Yang C, Xiong L, Qi P, Mu Q, Zhao X, Guo J, Deng Z, Peng Y. Energy Environ Sci, 2018, 11: 2363-2371 CrossRef Google Scholar

[77] Tao Z, Wang T, Wang X, Zheng J, Li X. ACS Appl Mater Interfaces, 2016, 8: 35390-35397 CrossRef Google Scholar

[78] Li X, Niu Z, Jiang J, Ai L. J Mater Chem A, 2016, 4: 3204-3209 CrossRef Google Scholar

[79] Zhao J, Quan X, Chen S, Liu Y, Yu H. ACS Appl Mater Interfaces, 2017, 9: 28685-28694 CrossRef Google Scholar

[80] Yang F, Zhao P, Hua X, Luo W, Cheng G, Xing W, Chen S. J Mater Chem A, 2016, 4: 16057-16063 CrossRef Google Scholar

[81] Zhou J, Dou Y, Zhou A, Shu L, Chen Y, Li JR. ACS Energy Lett, 2018, 3: 1655-1661 CrossRef Google Scholar

[82] Lu XF, Gu LF, Wang JW, Wu JX, Liao PQ, Li GR. Adv Mater, 2017, 29: 1604437 CrossRef PubMed Google Scholar

[83] Xu H, Shi ZX, Tong YX, Li GR. Adv Mater, 2018, 30: 1705442 CrossRef PubMed Google Scholar

[84] Huang T, Chen Y, Lee JM. Small, 2017, 13: 1702753 CrossRef PubMed Google Scholar

[85] Lyu F, Bai Y, Li Z, Xu W, Wang Q, Mao J, Wang L, Zhang X, Yin Y. Adv Funct Mater, 2017, 27: 1702324 CrossRef Google Scholar

[86] Wu LL, Wang QS, Li J, Long Y, Liu Y, Song SY, Zhang HJ. Small, 2018, 14: 1704035 CrossRef PubMed Google Scholar

[87] Zhang X, Liu S, Zang Y, Liu R, Liu G, Wang G, Zhang Y, Zhang H, Zhao H. Nano Energy, 2016, 30: 93-102 CrossRef Google Scholar

[88] Liu X, Liu Y, Fan LZ. J Mater Chem A, 2017, 5: 15310-15314 CrossRef Google Scholar

[89] Li S, Peng S, Huang L, Cui X, Al-Enizi AM, Zheng G. ACS Appl Mater Interfaces, 2016, 8: 20534-20539 CrossRef Google Scholar

[90] Xu B, Yang H, Yuan L, Sun Y, Chen Z, Li C. J Power Sources, 2017, 366: 193-199 CrossRef ADS Google Scholar

[91] Wang X, Huang X, Gao W, Tang Y, Jiang P, Lan K, Yang R, Wang B, Li R. J Mater Chem A, 2018, 6: 3684-3691 CrossRef Google Scholar

[92] Liu M, Lu X, Guo C, Wang Z, Li Y, Lin Y, Zhou Y, Wang S, Zhang J. ACS Appl Mater Interfaces, 2017, 9: 36146-36153 CrossRef Google Scholar

[93] Yan L, Cao L, Dai P, Gu X, Liu D, Li L, Wang Y, Zhao X. Adv Funct Mater, 2017, 27: 1703455 CrossRef Google Scholar

[94] He P, Yu XY, Lou XWD. Angew Chem Int Ed, 2017, 56: 3897-3900 CrossRef PubMed Google Scholar

[95] Wang M, Dong CL, Huang YC, Li Y, Shen S. Small, 2018, 14: 1801756 CrossRef PubMed Google Scholar

[96] Zhou T, Du Y, Wang D, Yin S, Tu W, Chen Z, Borgna A, Xu R. ACS Catal, 2017, 7: 6000-6007 CrossRef Google Scholar

[97] Zhao S, Yin H, Du L, He L, Zhao K, Chang L, Yin G, Zhao H, Liu S, Tang Z. ACS Nano, 2014, 8: 12660-12668 CrossRef PubMed Google Scholar

[98] Xia W, Zou R, An L, Xia D, Guo S. Energy Environ Sci, 2015, 8: 568-576 CrossRef Google Scholar

[99] Li Z, Shao M, Zhou L, Zhang R, Zhang C, Wei M, Evans DG, Duan X. Adv Mater, 2016, 28: 2337-2344 CrossRef PubMed Google Scholar

[100] Jiao L, Zhou YX, Jiang HL. Chem Sci, 2016, 7: 1690-1695 CrossRef PubMed Google Scholar

  • Figure 1

    Schematic illustration of MOFs and MOF-derived nanostructures for ORR and OER (color online).

  • Figure 2

    Volcano plots for different electrochemical process. (a) ORR activity plotted as a function of the oxygen binding energy. Reprinted with permission from Ref. [23]. Copyright 2004 American Chemical Society. (b) Activity trends for OER as a function of ΔGO*−ΔGOH* for Co3O4, MnxOy, rutile, and anatase. Reprinted with permission from Ref. [24]. Copyright 2011 John Wiley and Sons.

  • Figure 3

    (A) Crystal structure of NPC-4. (B) Schematics for O2 reduction catalyzed by as-prepared NPC-4 and activated NPC-4. (C) CV curve a, b, c of RGO, activated NPC-4 modified RGO/GCE in N2-saturated PBS solution, activated NPC-4 modified RGO/GCE in O2-saturated PBS solution, respectively. Reprinted with permission from Ref. [32]. Copyright 2014 Royal Society of Chemistry (color online).

  • Figure 4

    Optimized structures for the stable adsorbed O2 on (a) N-doped nanocarbon, (b) N,S-isolated nanocarbon, and (c) N,S-coupled nanocarbon. Free-energy diagram of ORR on (d) N-doped nanocarbon, (e) N,S-isolated nanocarbon, and (f) N,S-coupled nanocarbon in alkaline media. Reprinted with permission from Ref. [39]. Copyright 2017 Royal Society of Chemistry (color online).

  • Figure 5

    (a) Aberration-corrected HAADF-STEM image of Co–N–C-10. (b) Magnified image marked in (a). (c) ORR polarization curves for Co–N–C-x, N–C and commercial Pt/C catalysts in O2-saturated 0.1 M HClO4. (d) Comparison of mass-specific activity of each active site structure. Reprinted with permission from Ref. [64]. Copyright 2018 Elsevier (color online).

  • Figure 6

    (a) Schematic illustration of the host-guest chemistry strategy. (b) Optimized structures of (i) O2, (ii) OOH, (iii) O, and (iv) OH adsorbed on N–Fe–N4. (c) Free-energy diagrams of the reduction of O2 to H2O on the N–Fe–N4, Fe–N4, and Fe–N2 structures in acid media. Reprinted with permission from Ref. [66]. Copyright 2017 American Chemical Society (color online).

  • Figure 7

    (a) Schematic illustration of atomically dispersed MnN4 site catalyst synthesis. (b) Aberration-corrected MAADF-STEM image. (c) EEL point spectrum from the atomic site circled in red in (b). (d) Comparison of the catalytic activity of Fe–, Co– and Mn–N–C catalysts prepared from identical procedure. Reprinted with permission from Ref. [70]. Copyright 2018 Springer Nature (color online).

  • Figure 8

    (a) SEM image, (b) AFM image of NiFe-UMNs. (c) LSV curves of NiFe-UMNs, CoFe-UMNs, bulk NiFe-MOFs, commercial RuO2 and IrO2 in O2-saturated 1 M KOH. (d) Chronoamperometric curves for long term stability tests of NiFe-UMNs at the constant overpotential of 0.28 V and the inset is the comparison with commercial RuO2 (red curve). Reprinted with permission from Ref. [72]. Copyright 2018 Elsevier (color online).

  • Figure 9

    (a) Schematic illustration for the fabrication of Ni-Co@NiCoO2/C PMRAs. (b) SEM image, (c) HRTEM image of a typical NiCo@NiCoO2 core-shell nanoparticle. (d) High resolution XPS spectra ofO 1s of NiCo@NiCoO2/C PMRA. Reprinted with permission from Ref. [83]. Copyright 2018 John Wiley and Sons (color online).

  • Figure 10

    (a) Schematic illustration of the formation process of NiCoP/C nanoboxes. (b) FESEM image, (c) TEM image of NiCoP/C nanoboxes. (d) OER polarization curves of Ni–Co LDH, NiCoP, and NiCoP/C nanoboxes in an O2-saturated 1.0 M KOH. Reprinted with permission from Ref. [94]. Copyright 2017 John Wiley and Sons (color online).

  • Table 1   Summary of ORR performance of MOF-based catalysts

    Catalyst

    Active sites

    Eonset (V)

    E1/2 (V)

    Ref.

    NPC-1000

    Doped-N

    1.020

    0.902

    [47]

    NGPC-1000-10

    Doped-N

    0.947

    0.767

    [37]

    N,S-NH3-C-7

    Doped-N, S

    0.837

    [39]

    MIL-88B-NH3

    Fe/FeC3

    1.030

    0.920

    [97]

    Co@Co3O4@C-CM

    Co/Co3O4

    0.930

    0.810

    [98]

    LDH@ZIF-67-800

    Co–N

    0.940

    0.830

    [99]

    H-CoNC

    Co–Nx

    0.872

    0.796

    [53]

    Co@NC-MOF-2-900

    CoNx–Cy

    and CoNx

    0.930

    0.820

    [63]

    20Co-NC-1100

    Co–N4

    0.930

    0.800

    [69]

    C-Fe-Z8-Ar

    Fe–N4

    0.950

    0.820

    [65]

    Fe-ZIF-50 nm

    Fe–N4

    0.850

    [68]

  • Table 2   Summary of OER performance of MOF-based catalysts

    Catalyst

    Active sites

    η@10 mA cm−2 (mV)

    Tafel slope (mV dec−1)

    Ref.

    FeNi@NCNT

    FeNi alloy

    300

    48

    [77]

    2D Co3O4/CBDC

    Co3O4

    208

    50

    [81]

    CoMo–H

    CoO-MoO2

    312

    69

    [85]

    NF@NC-CoFe2O4/C NRAs

    CoFe2O4

    240

    45

    [82]

    Co9S8/NSCNFs-850

    Co9S8

    302

    54

    [86]

    CoSe2-450

    CoSe2

    330

    79

    [88]

    CoTe2@NCNTFs

    CoTe2

    330

    83

    [91]

    CoP/rGO-400

    CoP

    340

    66

    [100]

    NiCoP/C nanoboxes

    NiCoP

    330

    96

    [94]

    H3LCoCN800

    Co2P2O7

    320

    64

    [96]