A highly efficient cathode catalyst γ-MnO2@CNT composite for sodium-air batteries

More info
  • ReceivedDec 17, 2018
  • AcceptedFeb 13, 2019
  • PublishedMar 11, 2019


Funded by

the National Key R&D Program(2016YFB0901502,2016YFB0101201)

the National Natural Science Foundation of China(NSFC)

Ministry of Education(B12015)

and Tianjin High-Tech(18JCZDJC31500)


This work was supported by the National Key R&D Program (2016YFB0901502, 2016YFB0101201), the National Natural Science Foundation of China (NSFC) (51771094), Ministry of Education (B12015), and Tianjin High-Tech (18JCZDJC31500).

Interest statement

The authors declare that they have no conflict of interest.

Contributions statement

These authors contributed equally to this work.


Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Cheng F, Chen J. Chem Soc Rev, 2012, 41: 2172-2192 CrossRef PubMed Google Scholar

[2] Wang ZL, Xu D, Xu JJ, Zhang XB. Chem Soc Rev, 2014, 43: 7746-7786 CrossRef PubMed Google Scholar

[3] Zhao Z, Huang J, Peng Z. Angew Chem Int Ed, 2018, 57: 3874-3886 CrossRef PubMed Google Scholar

[4] Ren W, Zhu Z, An Q, Mai L. Small, 2017, 13: 1604181-1604193 CrossRef PubMed Google Scholar

[5] Fang C, Huang Y, Zhang W, Han J, Deng Z, Cao Y, Yang H. Adv Energy Mater, 2016, 6: 1501727 CrossRef Google Scholar

[6] Das SK, Lau S, Archer LA. J Mater Chem A, 2014, 2: 12623-12629 CrossRef Google Scholar

[7] Song K, Agyeman DA, Park M, Yang J, Kang YM. Adv Mater, 2017, 29: 06572. Google Scholar

[8] Yadegari H, Sun Q, Sun X. Adv Mater, 2016, 28: 7065-7093 CrossRef PubMed Google Scholar

[9] Landa-Medrano I, Li C, Ortiz-Vitoriano N, Ruiz de Larramendi I, Carrasco J, Rojo T. J Phys Chem Lett, 2016, 7: 1161-1166 CrossRef PubMed Google Scholar

[10] Yang H, Sun J, Wang H, Liang J, Li H. Chem Commun, 2018, 54: 4057-4060 CrossRef PubMed Google Scholar

[11] Xia C, Black R, Fernandes R, Adams B, Nazar LF. Nat Chem, 2015, 7: 496-501 CrossRef PubMed ADS Google Scholar

[12] Yadegari H, Norouzi Banis M, Lushington A, Sun Q, Li R, Sham TK, Sun X. Energy Environ Sci, 2017, 10: 286-295 CrossRef Google Scholar

[13] Zhao Q, Yan Z, Chen C, Chen J. Chem Rev, 2017, 117: 10121-10211 CrossRef PubMed Google Scholar

[14] Li F, Chen J. Adv Energy Mater, 2017, 7: 1602934 CrossRef Google Scholar

[15] Hu X, Cheng F, Zhang N, Han X, Chen J. Small, 2015, 11: 5545-5550 CrossRef PubMed Google Scholar

[16] Hu X, Han X, Hu Y, Cheng F, Chen J. Nanoscale, 2014, 6: 3522-3525 CrossRef PubMed ADS Google Scholar

[17] Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J. Chem Soc Rev, 2015, 44: 699-728 CrossRef PubMed Google Scholar

[18] Zhang T, Cheng F, Du J, Hu Y, Chen J. Adv Energy Mater, 2015, 5: 1400654 CrossRef Google Scholar

[19] Liu J, Ma Y, Roberts M, Gustafsson T, Edström K, Zhu J. J Power Sources, 2017, 352: 208-215 CrossRef ADS Google Scholar

[20] Liu S, Zhu Y, Xie J, Huo Y, Yang HY, Zhu T, Cao G, Zhao X, Zhang S. Adv Energy Mater, 2014, 4: 1301960 CrossRef Google Scholar

[21] Hu X, Sun J, Li Z, Zhao Q, Chen C, Chen J. Angew Chem Int Ed, 2016, 55: 6482-6486 CrossRef PubMed Google Scholar

[22] Huang JK, Li M, Wan Y, Dey S, Ostwal M, Zhang D, Yang CW, Su CJ, Jeng US, Ming J, Amassian A, Lai Z, Han Y, Li S, Li LJ. ACS Nano, 2018, 12: 836-843 CrossRef Google Scholar

[23] Yan J, Fan Z, Wei T, Cheng J, Shao B, Wang K, Song L, Zhang M. J Power Sources, 2009, 194: 1202-1207 CrossRef ADS Google Scholar

[24] Liu T, Liu Z, Kim G, Frith JT, Garcia-Araez N, Grey CP. Angew Chem Int Ed, 2017, 56: 16057-16062 CrossRef PubMed Google Scholar

[25] Hartmann P, Bender CL, Vračar M, Dürr AK, Garsuch A, Janek J, Adelhelm P. Nat Mater, 2013, 12: 228-232 CrossRef PubMed ADS Google Scholar

[26] Xia C, Fernandes R, Cho FH, Sudhakar N, Buonacorsi B, Walker S, Xu M, Baugh J, Nazar LF. J Am Chem Soc, 2016, 138: 11219-11226 CrossRef PubMed Google Scholar

[27] Frith JT, Landa-Medrano I, Ruiz de Larramendi I, Rojo T, Owen JR, Garcia-Araez N. Chem Commun, 2017, 53: 12008-12011 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Schematic illustration for synthesis of the γ-MnO2@CNT composite. (b) SEM images of γ-MnO2@CNT composite (1:1). (c) HR-TEM image and corresponding SAED pattern of the composite. (d) C 1s and (e) Mn 2p XPS spectra of the composite (color online).

  • Figure 2

    (a) X-ray diffraction patterns of pure γ-MnO2 and γ-MnO2@CNT composite with three different mass ratios. (b) Thermogravimetric analysis of γ-MnO2@CNT composite. (c) Electrochemical impedance spectroscopy (EIS) of SABs with different cathodes and corresponding equivalent electric circuit. (d) Cyclic voltammograms at a constant scan rate of 1 mV s−1. (e) Discharge-charge curves of batteries with different types catalysts. (f) Discharge-charge curves of batteries with different mass ratios of γ-MnO2@CNT (color online).

  • Figure 3

    Electrochemical performances of the SABs with γ-MnO2@CNT (1:1) cathode. (a) Discharge-charge curves at different current density with a voltage window from 1.8 to 3.0 V. Cycle performance at (b) 500 mA g–1 and (c) 1000 mA g–1. (d) Comparison of cycling performance of CNT, α-MnO2@CNT and γ-MnO2@CNT cathodes (color online).

  • Figure 4

    Product reversibility. XRD patterns of (a) the γ-MnO2@CNT cathode after discharge and charge. SEM images of (b, c) discharged and (d, e) charged cathodes (color online).