Materials and structures for the electron transport layer of efficient and stable perovskite solar cells

More info
  • ReceivedFeb 20, 2019
  • AcceptedMar 20, 2019
  • PublishedApr 11, 2019


The electron transport layer plays a vital function in extracting and transporting photogenerated electrons, modifying the interface, aligning the interfacial energy level and minimizing the charge recombination in perovskite solar cells. This review summarizes the recent research progress on electron transport materials of metal oxides, organic molecules and multilayers. The doped metal oxides as electron transport materials in regular perovskite solar cells show improved device performance relative to their non-doped counterpart due to enhanced electron mobility and energy level alignment. The non-fullerene organic electron transport materials with better electron mobility and tunable energy level alignment need to be further designed and developed despite their advantages of mechanical flexibility and wide range tunability. The multilayer electron transport materials are suggested to be an important direction of research for efficient and stable perovskite solar cells because of their favorable synergistic interaction.

Funded by

the Shenzhen Peacock Plan Program(KQTD2016053015544057)

the Nanshan Pilot Plan(LHTD20170001)

and the National Natural Science Foundation of China(51773230)


This work was supported by the Shenzhen Peacock Plan Program (KQTD2016053015544057), the Nanshan Pilot Plan (LHTD20170001), and the National Natural Science Foundation of China (51773230).

Interest statement

The authors declare that they have no conflict of interest.


[1] Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050-6051 CrossRef PubMed Google Scholar

[2] Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591 CrossRef PubMed ADS Google Scholar

[3] Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Science, 2012, 338: 643-647 CrossRef PubMed ADS Google Scholar

[4] National Renewable Energy Laboratory. Best research: cell efficiency. https://www.nrel.gov/pv/cell-efficiency.html, 2019. Google Scholar

[5] Zhang W, Wang YC, Li X, Song C, Wan L, Usman K, Fang J. Adv Sci, 2018, 5: 1800159 CrossRef PubMed Google Scholar

[6] Wang Y, Yue Y, Yang X, Han L. Adv Energy Mater, 2018, 8: 1800249 CrossRef Google Scholar

[7] Lee JW, Lee TY, Yoo PJ, Grätzel M, Mhaisalkar S, Park NG. J Mater Chem A, 2014, 2: 9251-9259 CrossRef Google Scholar

[8] Mali SS, Shim CS, Park HK, Heo J, Patil PS, Hong CK. Chem Mater, 2015, 27: 1541-1551 CrossRef Google Scholar

[9] Li JF, Zhang ZL, Gao HP, Zhang Y, Mao YL. J Mater Chem A, 2015, 3: 19476-19482 CrossRef Google Scholar

[10] Wu WQ, Huang F, Chen D, Cheng YB, Caruso RA. Adv Funct Mater, 2015, 25: 3264-3272 CrossRef Google Scholar

[11] Lee JW, Lee SH, Ko HS, Kwon J, Park JH, Kang SM, Ahn N, Choi M, Kim JK, Park NG. J Mater Chem A, 2015, 3: 9179-9186 CrossRef Google Scholar

[12] Zhang J, Hultqvist A, Zhang T, Jiang L, Ruan C, Yang L, Cheng Y, Edoff M, Johansson EMJ. ChemSusChem, 2017, 10: 3810-3817 CrossRef PubMed Google Scholar

[13] Liu D, Kelly TL. Nat Photon, 2013, 8: 133-138 CrossRef ADS Google Scholar

[14] Song J, Zheng E, Bian J, Wang XF, Tian W, Sanehira Y, Miyasaka T. J Mater Chem A, 2015, 3: 10837-10844 CrossRef Google Scholar

[15] Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y. J Am Chem Soc, 2015, 137: 6730-6733 CrossRef PubMed Google Scholar

[16] Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Nat Energy, 2016, 2: 16177 CrossRef ADS Google Scholar

[17] Han GS, Chung HS, Kim DH, Kim BJ, Lee JW, Park NG, Cho IS, Lee JK, Lee S, Jung HS. Nanoscale, 2015, 7: 15284-15290 CrossRef PubMed ADS Google Scholar

[18] Gheno A, Thu Pham TT, Di Bin C, Bouclé J, Ratier B, Vedraine S. Sol Energy Mater Sol Cells, 2017, 161: 347-354 CrossRef Google Scholar

[19] Wang K, Shi Y, Li B, Zhao L, Wang W, Wang X, Bai X, Wang S, Hao C, Ma T. Adv Mater, 2016, 28: 1891-1897 CrossRef PubMed Google Scholar

[20] Qin P, Domanski AL, Chandiran AK, Berger R, Butt HJ, Dar MI, Moehl T, Tetreault N, Gao P, Ahmad S, Nazeeruddin MK, Grätzel M. Nanoscale, 2014, 6: 1508-1514 CrossRef PubMed ADS Google Scholar

[21] Leijtens T, Eperon GE, Pathak S, Abate A, Lee MM, Snaith HJ. Nat Commun, 2013, 4: 2885 CrossRef PubMed ADS Google Scholar

[22] Pathak SK, Abate A, Ruckdeschel P, Roose B, Gödel KC, Vaynzof Y, Santhala A, Watanabe SI, Hollman DJ, Noel N, Sepe A, Wiesner U, Friend R, Snaith HJ, Steiner U. Adv Funct Mater, 2014, 24: 6046-6055 CrossRef Google Scholar

[23] Wang J, Qin M, Tao H, Ke W, Chen Z, Wan J, Qin P, Xiong L, Lei H, Yu H, Fang G. Appl Phys Lett, 2015, 106: 121104 CrossRef ADS Google Scholar

[24] Zhang X, Bao Z, Tao X, Sun H, Chen W, Zhou X. RSC Adv, 2014, 4: 64001-64005 CrossRef Google Scholar

[25] Mahmood K, Swain BS, Amassian A. Adv Energy Mater, 2015, 5: 1500568 CrossRef Google Scholar

[26] Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, Wen TC. Adv Mater, 2013, 25: 3727-3732 CrossRef PubMed Google Scholar

[27] Liang PW, Chueh CC, Williams ST, Jen AKY. Adv Energy Mater, 2015, 5: 1402321 CrossRef Google Scholar

[28] Xing Y, Sun C, Yip HL, Bazan GC, Huang F, Cao Y. Nano Energy, 2016, 26: 7-15 CrossRef Google Scholar

[29] Chen R, Wang W, Bu TL, Ku ZL, Zhong J, Peng Y, Xiao S, You W, Huang F, Cheng Y, Fu Z. Acta Phys-Chim Sin, 2019, 35: 401–407. Google Scholar

[30] Bai Y, Dong Q, Shao Y, Deng Y, Wang Q, Shen L, Wang D, Wei W, Huang J. Nat Commun, 2016, 7: 12806 CrossRef PubMed ADS Google Scholar

[31] Akbulatov AF, Frolova LA, Griffin MP, Gearba IR, Dolocan A, Vanden Bout DA, Tsarev S, Katz EA, Shestakov AF, Stevenson KJ, Troshin PA. Adv Energy Mater, 2017, 7: 1700476 CrossRef Google Scholar

[32] Jiang K, Wu F, Yu H, Yao Y, Zhang G, Zhu L, Yan H. J Mater Chem A, 2018, 6: 16868-16873 CrossRef Google Scholar

[33] Cheng M, Li Y, Liu P, Zhang F, Hajian A, Wang H, Li J, Wang L, Kloo L, Yang X, Sun L. Sol RRL, 2017, 1: 1700046 CrossRef Google Scholar

[34] Jung SK, Heo JH, Lee DW, Lee SC, Lee SH, Yoon W, Yun H, Im SH, Kim JH, Kwon OP. Adv Funct Mater, 2018, 28: 1800346 CrossRef Google Scholar

[35] Zhao D, Zhu Z, Kuo MY, Chueh CC, Jen AKY. Angew Chem Int Ed, 2016, 55: 8999-9003 CrossRef PubMed Google Scholar

[36] Wang N, Zhao K, Ding T, Liu W, Ahmed AS, Wang Z, Tian M, Sun XW, Zhang Q. Adv Energy Mater, 2017, 7: 1700522 CrossRef Google Scholar

[37] Wu F, Gao W, Yu H, Zhu L, Li L, Yang C. J Mater Chem A, 2018, 6: 4443-4448 CrossRef Google Scholar

[38] Wang R, Qiao J, He B, Tang X, Wu F, Zhu L. J Mater Chem C, 2018, 6: 8429-8434 CrossRef Google Scholar

[39] Wan L, Li X, Song C, He Y, Zhang W. Sol Energy Mater Sol Cells, 2019, 191: 437-443 CrossRef Google Scholar

[40] Jiang Y, Li J, Xiong S, Jiang F, Liu T, Qin F, Hu L, Zhou Y. J Mater Chem A, 2017, 5: 17632-17639 CrossRef Google Scholar

[41] Yu H, Zhang Q, Han C, Zhu X, Sun X, Yang Q, Yang H, Deng L, Zhao F, Wang K, Hu B. Org Electron, 2018, 63: 137-142 CrossRef Google Scholar

[42] Jiang K, Wu F, Zhu L, Yan H. ACS Appl Mater Interfaces, 2018, 10: 36549-36555 CrossRef Google Scholar

[43] Kim HI, Kim MJ, Choi K, Lim C, Kim YH, Kwon SK, Park T. Adv Energy Mater, 2018, 8: 1702872 CrossRef Google Scholar

[44] Tian L, Hu Z, Liu X, Liu Z, Guo P, Xu B, Xue Q, Yip HL, Huang F, Cao Y. ACS Appl Mater Interfaces, 2019, 11: 5289-5297 CrossRef Google Scholar

[45] Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542-546 CrossRef PubMed ADS Google Scholar

[46] Song S, Hill R, Choi K, Wojciechowski K, Barlow S, Leisen J, Snaith HJ, Marder SR, Park T. Nano Energy, 2018, 49: 324-332 CrossRef Google Scholar

[47] Noh YW, Lee JH, Jin IS, Park SH, Jung JW. Electrochim Acta, 2019, 294: 337-344 CrossRef Google Scholar

[48] Tavakoli MM, Saliba M, Yadav P, Holzhey P, Hagfeldt A, Zakeeruddin SM, Grätzel M. Adv Energy Mater, 2019, 9: 1802646 CrossRef Google Scholar

[49] Wu SH, Lin MY, Chang SH, Tu WC, Chu CW, Chang YC. J Phys Chem C, 2018, 122: 236-244 CrossRef Google Scholar

[50] Rahman NU, Khan WU, Li W, Khan S, Khan J, Zheng S, Su T, Zhao J, Aldred MP, Chi Z. J Mater Chem A, 2019, 7: 322-329 CrossRef Google Scholar

[51] Zheng S, Li W, Su T, Xie F, Chen J, Yang Z, Zhang Y, Liu S, Aldred MP, Wong KY, Xu J, Chi Z. Sol RRL, 2018, 2: 1700245 CrossRef Google Scholar

[52] Hou Q, Ren J, Chen H, Yang P, Shao Q, Zhao M, Zhao X, He H, Wang N, Luo Q, Guo Z. ChemElectroChem, 2018, 5: 726-731 CrossRef Google Scholar

[53] Zhang J, Tan CH, Du T, Morbidoni M, Lin CT, Xu S, Durrant JR, McLachlan MA. Sci Bull, 2018, 63: 343-348 CrossRef Google Scholar

[54] Xu J, Fang M, Chen J, Zhang B, Yao J, Dai S. ACS Appl Mater Interfaces, 2018, 10: 20578-20590 CrossRef Google Scholar

  • Figure 1

    The schematic device structure of typical perovskite solar cells (color online).

  • Figure 2

    (a) Sketch of the one-step facile hydrothermal process to fabricate TiO2 nanowire thin films on FTO glass; scanning electron microscope (SEM) images of the surface morphologies of FTO glass before (b) and after (c) the hydrothermal treatment; (d) transmission electron microscope (TEM) image of as-prepared TiO2 nanowires scratched from the FTO glass [10] (color online).

  • Figure 3

    Properties of SnO2 nanoparticles. (a) TEM image of SnO2 nanoparticles deposited on a copper mesh; (b) high-resolution TEM image of SnO2 nanoparticles; (c) electron diffraction of SnO2 nanoparticles [16].

  • Figure 4

    Cross-sectional functional field SEM (FESEM) images of (a) Sn-doped TiO2 nanorod grown on FTO substrate, (b) perovskite-sensitized Sn-doped TiO2 nanorod, and (c) full solar cell; (d) X-ray diffraction (XRD) as a function of 2-theta for the Sn-doped TiO2 nanorod [24] (color online).

  • Figure 5

    The molecular structures of fullerene derivatives and non-fullerene small organic molecules.

  • Figure 6

    The molecular structures of non-fullerene polymer molecules.

  • Figure 7

    The relevant energy levels of selected main ETMs (the data were collected from the references in this review) (color online).

  • Figure 8

    (a) Cross-sectional SEM image of a cell with ITIC; (b) current density-voltage (J-V) curve; (c) external quantum efficiency (EQE) spectra of PSCs based on MAPbI3 with different ITIC concentrations [47] (color online).

  • Figure 9

    (a) Schematic device architecture; (b) cross-sectional FESEM image of the planar-heterojunction PSCs with TiO2/ZnO/C60 electron transport trilayer [54] (color online).

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号