SCIENCE CHINA Chemistry, Volume 62 , Issue 9 : 1221-1229(2019) https://doi.org/10.1007/s11426-019-9484-8

Regulating the morphology of fluorinated non-fullerene acceptor and polymer donor via binary solvent mixture for high efficiency polymer solar cells

More info
  • ReceivedMar 20, 2019
  • AcceptedApr 23, 2019
  • PublishedMay 30, 2019


Fluorinated non-fullerene acceptors (NFAs) usually have planar backbone and a higher tendency to crystallize compared to their non-fluorinated counterparts, which leads to enhanced charge mobility in organic solar cells (OSCs). However, this self-organization behavior may result in excessive phase separation with electron donors and thereby deteriorate device efficiency. Herein, we demonstrate an effective approach to tune the molecular organization of a fluorinated NFA (INPIC-4F), and its phase separation with the donor PBDB-T, by varying the casting solvent. A prolonged film drying time encourages the crystallization of INPIC-4F into spherulites and consequently results in excessive phase separation, leading to a low device power conversion efficiency (PCE) of 8.1%. Contrarily, a drying time leads to fine mixed domains with inefficient charge transport properties, resulting in a moderate device PCE of 11.4%. An intermediate film drying time results in the formation of face-on π-π stacked PBDB-T and INPIC-4F domains with continuous phase-separated networks, which facilitates light absorption, exciton dissociation as well as balanced charge transport towards the electrode, and achieves a remarkable PCE of 13.1%. This work provides a rational guide for optimizing the molecular ordering of NFAs and electron donors for high device efficiency.

Funded by

the Natural Science Foundation of Hubei Province(Grant,No.,2018CFA055)

the National Natural Science Foundation of China(Grants,No.,21774097,21504065,51573077,21875111)


This work was supported by the Natural Science Foundation of Hubei Province (2018CFA055), the National Natural Science Foundation of China (21774097, 21504065, 51573077, 21875111), and the Fundamental Research Funds For the Central Universities (WUT: 195201017, 2019IVB081). We thank beamline I07 at Diamond Light Source (UK) for providing beam time to perform GIWAXS measurements. D.G. Lidzey thanks the U.K. EPSRC for funding High Resolution Mapping of Performance and Degradation Mechanisms in Printable Photovoltaic Devices (EP/M025020/1), and EPSRC for funding a studentship for E.L.K. Spooner via the Centre for Doctoral Training in New and Sustainable PV (EP/L01551X/1) and for a DTA studentship award for R.C. Kilbride.

Contributions statement

These authors contributed equally to this work.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Heeger AJ. Chem Soc Rev, 2010, 39: 2354-2371 CrossRef PubMed Google Scholar

[2] Heeger AJ. Adv Mater, 2014, 26: 10-28 CrossRef PubMed Google Scholar

[3] Li W, Ye L, Li S, Yao H, Ade H, Hou J. Adv Mater, 2018, 30: 1707170 CrossRef PubMed Google Scholar

[4] Zhou Y, Li M, Song J, Liu Y, Zhang J, Yang L, Zhang Z, Bo Z, Wang H. Nano Energy, 2018, 45: 10-20 CrossRef Google Scholar

[5] Zhang J, Yan C, Wang W, Xiao Y, Lu X, Barlow S, Parker TC, Zhan X, Marder SR. Chem Mater, 2018, 30: 309-313 CrossRef Google Scholar

[6] Luo Z, Bin H, Liu T, Zhang ZG, Yang Y, Zhong C, Qiu B, Li G, Gao W, Xie D, Wu K, Sun Y, Liu F, Li Y, Yang C. Adv Mater, 2018, 30: 1706124 CrossRef PubMed Google Scholar

[7] Li C, Xie Y, Fan B, Han G, Yi Y, Sun Y. J Mater Chem C, 2018, 6: 4873-4877 CrossRef Google Scholar

[8] Fan B, Zhang D, Li M, Zhong W, Zhao Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62, doi: 10.1007/s11426-019-9457-5. Google Scholar

[9] Nielsen CB, Holliday S, Chen HY, Cryer SJ, McCulloch I. Acc Chem Res, 2015, 48: 2803-2812 CrossRef PubMed Google Scholar

[10] Lin Y, Wang J, Dai S, Li Y, Zhu D, Zhan X. Adv Energy Mater, 2014, 4: 1400420 CrossRef Google Scholar

[11] Li S, Ye L, Zhao W, Liu X, Zhu J, Ade H, Hou J. Adv Mater, 2017, 29: 1704051 CrossRef PubMed Google Scholar

[12] Lopez SA, Sanchez-Lengeling B, de Goes Soares J, Aspuru-Guzik A. Joule, 2017, 1: 857-870 CrossRef Google Scholar

[13] Cui Y, Zhang S, Liang N, Kong J, Yang C, Yao H, Ma L, Hou J. Adv Mater, 2018, 30: 1802499 CrossRef PubMed Google Scholar

[14] Zhang Z, Feng L, Xu S, Liu Y, Peng H, Zhang ZG, Li Y, Zou Y. Adv Sci, 2017, 4: 1700152 CrossRef PubMed Google Scholar

[15] Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170-1174 CrossRef PubMed Google Scholar

[16] Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28: 4734-4739 CrossRef PubMed Google Scholar

[17] Min J, Cui C, Heumueller T, Fladischer S, Cheng X, Spiecker E, Li Y, Brabec CJ. Adv Energy Mater, 2016, 6: 1600515 CrossRef Google Scholar

[18] Chao P, Wang H, Qu S, Mo D, Meng H, Chen W, He F. Macromolecules, 2017, 50: 9617-9625 CrossRef ADS Google Scholar

[19] Wu Y, An C, Shi L, Yang L, Qin Y, Liang N, He C, Wang Z, Hou J. Angew Chem Int Ed, 2018, 57: 12911-12915 CrossRef PubMed Google Scholar

[20] Tang LM, Xiao J, Bai WY, Li QY, Wang HC, Miao MS, Yip HL, Xu YX. Org Electron, 2019, 64: 1-6 CrossRef Google Scholar

[21] Chen HY, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G. Nat Photon, 2009, 3: 649-653 CrossRef ADS Google Scholar

[22] Fan Q, Wang Y, Zhang M, Wu B, Guo X, Jiang Y, Li W, Guo B, Ye C, Su W, Fang J, Ou X, Liu F, Wei Z, Sum TC, Russell TP, Li Y. Adv Mater, 2018, 30: 1704546 CrossRef PubMed Google Scholar

[23] Ke X, Kan B, Wan X, Wang Y, Zhang Y, Li C, Chen Y. Dye Pigment, 2018, 155: 241-248 CrossRef Google Scholar

[24] Kini GP, Choi JY, Jeon SJ, Suh IS, Moon DK. Polymer, 2018, 148: 330-338 CrossRef Google Scholar

[25] Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Adv Mater, 2017, 29: 1700144 CrossRef PubMed Google Scholar

[26] Zhang Q, Kelly MA, Bauer N, You W. Acc Chem Res, 2017, 50: 2401-2409 CrossRef PubMed Google Scholar

[27] Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336-1343 CrossRef PubMed Google Scholar

[28] Zhang Y, Yao H, Zhang S, Qin Y, Zhang J, Yang L, Li W, Wei Z, Gao F, Hou J. Sci China Chem, 2018, 61: 1328-1337 CrossRef Google Scholar

[29] Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148-7151 CrossRef PubMed Google Scholar

[30] Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531-537 CrossRef Google Scholar

[31] Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56: 3045-3049 CrossRef PubMed Google Scholar

[32] Yao H, Chen Y, Qin Y, Yu R, Cui Y, Yang B, Li S, Zhang K, Hou J. Adv Mater, 2016, 28: 8283-8287 CrossRef PubMed Google Scholar

[33] Song X, Gasparini N, Ye L, Yao H, Hou J, Ade H, Baran D. ACS Energy Lett, 2018, 3: 669-676 CrossRef Google Scholar

[34] Guo X, Zhang M, Ma W, Ye L, Zhang S, Liu S, Ade H, Huang F, Hou J. Adv Mater, 2014, 26: 4043-4049 CrossRef PubMed Google Scholar

[35] Guo X, Cui C, Zhang M, Huo L, Huang Y, Hou J, Li Y. Energy Environ Sci, 2012, 5: 7943-7949 CrossRef Google Scholar

[36] Wan Q, Guo X, Wang Z, Li W, Guo B, Ma W, Zhang M, Li Y. Adv Funct Mater, 2016, 26: 6635-6640 CrossRef Google Scholar

[37] Guo X, Zhang M, Ma W, Zhang S, Hou J, Li Y. RCS Adv, 2016, 6: 51924–51931. Google Scholar

[38] Ye L, Zhang S, Ma W, Fan B, Guo X, Huang Y, Ade H, Hou J. Adv Mater, 2012, 24: 6335-6341 CrossRef PubMed Google Scholar

[39] Yao Y, Hou J, Xu Z, Li G, Yang Y. Adv Funct Mater, 2008, 18: 1783-1789 CrossRef Google Scholar

[40] Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z, Hou J. Macromolecules, 2012, 45: 9611-9617 CrossRef ADS Google Scholar

[41] Wu H, Fan H, Xu S, Zhang C, Chen S, Yang C, Chen D, Liu F, Zhu X. Sol RRL, 2017, 1: 1700165 CrossRef Google Scholar

[42] Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W. Adv Mater, 2018, 30: 1707150 CrossRef PubMed Google Scholar

[43] Li W, Cai J, Yan Y, Cai F, Li S, Gurney RS, Liu D, McGettrick JD, Watson TM, Li Z, Pearson AJ, Lidzey DG, Hou J, Wang T. Sol RRL, 2018, 2: 1800114 CrossRef Google Scholar

[44] Li W, Chen M, Zhang Z, Cai J, Zhang H, Gurney RS, Liu D, Yu J, Tang W, Wang T. Adv Funct Mater, 2018, 6: 1807662 CrossRef Google Scholar

[45] Müller-Buschbaum P. Adv Mater, 2014, 26: 7692-7709 CrossRef PubMed Google Scholar

[46] Lee J, Ko SJ, Seifrid M, Lee H, McDowell C, Luginbuhl BR, Karki A, Cho K, Nguyen TQ, Bazan GC. Adv Energy Mater, 2018, 8: 1801209 CrossRef Google Scholar

[47] Yang J, Uddin MA, Tang Y, Wang Y, Wang Y, Su H, Gao R, Chen ZK, Dai J, Woo HY, Guo X. ACS Appl Mater Interfaces, 2018, 10: 23235-23246 CrossRef Google Scholar

[48] Li W, Cai J, Cai F, Yan Y, Yi H, Gurney RS, Liu D, Iraqi A, Wang T. Nano Energy, 2018, 44: 155-163 CrossRef Google Scholar

[49] He Z, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y. Adv Mater, 2011, 23: 4636-4643 CrossRef PubMed Google Scholar

[50] Xie Y, Zhou W, Yin J, Hu X, Zhang L, Meng X, Ai Q, Chen Y. J Mater Chem A, 2016, 4: 6158-6166 CrossRef Google Scholar

[51] An Q, Zhang F, Gao W, Sun Q, Zhang M, Yang C, Zhang J. Nano Energy, 2018, 45: 177-183 CrossRef Google Scholar

[52] Guo X, Zhang M, Tan J, Zhang S, Huo L, Hu W, Li Y, Hou J. Adv Mater, 2012, 24: 6536-6541 CrossRef PubMed Google Scholar

[53] Li W, Yan Y, Gong Y, Cai J, Cai F, Gurney RS, Liu D, Pearson AJ, Lidzey DG, Wang T. Adv Funct Mater, 2018, 28: 1704212 CrossRef Google Scholar

[54] Koster LJA, Mihailetchi VD, Xie H, Blom PWM. Appl Phys Lett, 2005, 87: 203502 CrossRef ADS Google Scholar

[55] Ye L, Xie Y, Weng K, Ryu HS, Li C, Cai Y, Fu H, Wei D, Woo HY, Tan S, Sun Y. Nano Energy, 2019, 58: 220-226 CrossRef Google Scholar

[56] Kan B, Zhang J, Liu F, Wan X, Li C, Ke X, Wang Y, Feng H, Zhang Y, Long G, Friend RH, Bakulin AA, Chen Y. Adv Mater, 2018, 30: 1704904 CrossRef PubMed Google Scholar

[57] Zheng Y, Goh T, Fan P, Shi W, Yu J, Taylor AD. ACS Appl Mater Interfaces, 2016, 8: 15724-15731 CrossRef Google Scholar

[58] Xiao B, Zhang M, Yan J, Luo G, Gao K, Liu J, You Q, Wang HB, Gao C, Zhao B, Zhao X, Wu H, Liu F. Nano Energy, 2017, 39: 478-488 CrossRef Google Scholar

  • Figure 1

    (a) Chemical structures of INPIC-4F and PBDB-T; (b) energy level diagrams of ITO/ZnO/PBDB-T:INPIC-4F/MoO3/Ag inverted devices (color online).

  • Figure 2

    (a) J-V characteristics, (b) EQE of PBDB-T:INPIC-4F solar cells cast using different solvents; (c) absorbance and (d) PL spectra of PBDB-T:INPIC-4F films cast using different solvents (color online).

  • Figure 3

    Optical microscope images of INPIC-4F films cast from (a) CB, (b) CB:CF (1.5:1, v/v) and (c) CF; AFM images of PBDB-T:INPIC-4F blend films cast from (d) CB, (e) CB:CF (1.5:1, v/v) and (f) CF (color online).

  • Figure 4

    2D GIWAXS patterns of PBDB-T:INPIC-4F blend films prepared from (a) CB, (b) CB:CF (1.5:1, v/v) and (c) CF. (d) Out-of-plane 1D profiles of GIWAXS patterns along the qz axis of PBDB-T:INPIC-4F films under different conditions. Multi-peak fitting results from 1.4 to 2.0 Å−1 of PBDB-T:INPIC-4F films (e) CB, (f) CB:CF (1.5:1, v/v) and (g) CF (color online).

  • Figure 5

    (a) Photocurrent density versus effective voltage curves of PBDB-T:INPIC-4F films cast from different solvents; (b) Nyquist plots of impedance spectra of various devices under 1 sun irradiation with an applied bias at Voc (color online).

  • Table 1   Photovoltaic parameters of PBDB-T:INPIC-4F OSCs measured at an illumination of AM 1.5 G, The statistical data were obtained from over 25 individual devices


    FF (%)


    Calculated Jsc (mA/cm2)

    Voc (V)

    PCEmax (PCEavg) (%)






    8.1 (7.4±0.9)

    CB:CF (1.5:1, v/v)





    13.1 (12.9±0.3)






    11.4 (11.0±0.5)

  • Table 2   , , , hole and electron mobilities of PBDB-T:INPIC-4F OSCs prepared under different conditions



    Pdiss (%)

    Pcoll (%)

    Hole mobility (μh)(cm2/(V s))

    Electron mobility (μe)(cm2/(V s))









    CB:CF (1.5:1, v/v)














  • Table 3   Summary of the electrical parameters of OSCs obtained by fitting the Nyquist plots


    Rs (Ω)

    Rp (Ω)

    CPE1-T (F)

    R1 (Ω)

    CPE2-T (F)







    CB:CF (1.5:1, v/v)












Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号