logo

SCIENCE CHINA Chemistry, Volume 62 , Issue 10 : 1365-1370(2019) https://doi.org/10.1007/s11426-019-9511-x

Single-crystalline layered double hydroxides with rich defects and hierarchical structure by mild reduction for enhancing the oxygen evolution reaction

More info
  • ReceivedApr 2, 2019
  • AcceptedJun 4, 2019
  • PublishedJun 26, 2019

Abstract


Funded by

the Fundamental Research Funds for the Central Universities(531107051102)

the National Natural Science Foundation of China(51402100,21573066,21522305)

the Provincial Natural Science Foundation of Hunan(2016TP1009)

and the Shenzhen Discovery Funding(JCYJ20170306141659388)


Acknowledgment

This work was supported by the Fundamental Research Funds for the Central Universities (531107051102), the National Natural Science Foundation of China (51402100, 21573066, 21522305), the Provincial Natural Science Foundation of Hunan (2016TP1009), and the Shenzhen Discovery Funding (JCYJ20170306141659388).


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Khan SUM, Al-Shahry M, Ingler WB. Science, 2002, 297: 2243-2245 CrossRef PubMed ADS Google Scholar

[2] Montoya JH, Seitz LC, Chakthranont P, Vojvodic A, Jaramillo TF, Nørskov JK. Nat Mater, 2017, 16: 70-81 CrossRef PubMed ADS Google Scholar

[3] Lv L, Yang Z, Chen K, Wang C, Xiong Y. Adv Energy Mater, 2019, 9: 1803358. Google Scholar

[4] Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Science, 2017, 355: eaad4998 CrossRef PubMed Google Scholar

[5] Hunter BM, Gray HB, Müller AM. Chem Rev, 2016, 116: 14120-14136 CrossRef PubMed Google Scholar

[6] Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Chem Soc Rev, 2017, 46: 337-365 CrossRef PubMed Google Scholar

[7] Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y. J Phys Chem Lett, 2012, 3: 399-404 CrossRef PubMed Google Scholar

[8] Reier T, Oezaslan M, Strasser P. ACS Catal, 2012, 2: 1765-1772 CrossRef Google Scholar

[9] Zhou P, Wang Y, Xie C, Chen C, Liu H, Chen R, Huo J, Wang S. Chem Commun, 2017, 53: 11778-11781 CrossRef PubMed Google Scholar

[10] Wang Y, Yan D, Hankari S, Zou Y, Wang S. Adv Sci, 2018, 5: 1800064. Google Scholar

[11] Liu R, Wang Y, Liu D, Zou Y, Wang S. Adv Mater, 2017, 29: 1701546. Google Scholar

[12] Song F, Hu X. Nat Commun, 2014, 5: 4477 CrossRef PubMed ADS Google Scholar

[13] Liang J, Ma R, Iyi N, Ebina Y, Takada K, Sasaki T. Chem Mater, 2010, 22: 371-378 CrossRef Google Scholar

[14] Lu Z, Xu W, Zhu W, Yang Q, Lei X, Liu J, Li Y, Sun X, Duan X. Chem Commun, 2014, 50: 6479-6482 CrossRef PubMed Google Scholar

[15] Long X, Wang Z, Xiao S, An Y, Yang S. Mater Today, 2016, 19: 213-226 CrossRef Google Scholar

[16] Wang Q, O’Hare D. Chem Rev, 2012, 112: 4124-4155 CrossRef PubMed Google Scholar

[17] Shao M, Zhang R, Li Z, Wei M, Evans DG, Duan X. Chem Commun, 2015, 51: 15880-15893 CrossRef PubMed Google Scholar

[18] Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H. J Am Chem Soc, 2013, 135: 8452-8455 CrossRef PubMed Google Scholar

[19] Liu Y, Cheng H, Lyu M, Fan S, Liu Q, Zhang W, Zhi Y, Wang C, Xiao C, Wei S, Ye B, Xie Y. J Am Chem Soc, 2014, 136: 15670-15675 CrossRef PubMed Google Scholar

[20] He J, Zou Y, Wang S. Dalton Trans, 2019, 48: 15-20 CrossRef PubMed Google Scholar

[21] Wang Y, Zhang Y, Liu Z, Xie C, Feng S, Liu D, Shao M, Wang S. Angew Chem Int Ed, 2017, 56: 5867-5871 CrossRef PubMed Google Scholar

[22] Yu L, Yang JF, Guan BY, Lu Y, Lou XWD. Angew Chem Int Ed, 2018, 57: 172-176 CrossRef PubMed Google Scholar

[23] Xie J, Zhang X, Zhang H, Zhang J, Li S, Wang R, Pan B, Xie Y. Adv Mater, 2017, 29: 1604765 CrossRef PubMed Google Scholar

[24] Jia X, Zhao Y, Chen G, Shang L, Shi R, Kang X, Waterhouse GIN, Wu LZ, Tung CH, Zhang T. Adv Energy Mater, 2016, 6: 1502585 CrossRef Google Scholar

[25] Ling T, Yan DY, Jiao Y, Wang H, Zheng Y, Zheng X, Mao J, Du XW, Hu Z, Jaroniec M, Qiao SZ. Nat Commun, 2016, 7: 12876 CrossRef PubMed ADS Google Scholar

[26] Yang Q, Li T, Lu Z, Sun X, Liu J. Nanoscale, 2014, 6: 11789-11794 CrossRef PubMed ADS Google Scholar

[27] Zhuang L, Ge L, Yang Y, Li M, Jia Y, Yao X, Zhu Z. Adv Mater, 2017, 29: 1606793 CrossRef PubMed Google Scholar

[28] Li L, Liu C, He G, Fan D, Manthiram A. Energy Environ Sci, 2015, 8: 3274-3282 CrossRef Google Scholar

[29] Xu W, Lyu F, Bai Y, Gao A, Feng J, Cai Z, Yin Y. Nano Energy, 2018, 43: 110-116 CrossRef Google Scholar

[30] Li S, Peng S, Huang L, Cui X, Al-Enizi AM, Zheng G. ACS Appl Mater Interfaces, 2016, 8: 20534-20539 CrossRef Google Scholar

  • Figure 1

    (a) Illustration of the solvothermal reaction of pristine CoFe LDHs by using ethylene glycol; (b) XRD patterns of CoFe LDHs and DH-CoFe LDHs (color online).

  • Figure 2

    TEM images for the pristine CoFe LDHs (a, b) and the DH-CoFe LDHs (c, d) (color online).

  • Figure 3

    The XPS spectra of CoFe LDHs and DH-CoFe LDHs. (a) Co 2p3/2, (c) Fe 2p3/2, and (e) O 1s of the pristine CoFe LDHs; (b) Co 2p3/2,(d) Fe 2p3/2, and (f) O 1s of the DH-CoFe LDHs (color online).

  • Figure 4

    The OER performance of the pristine CoFe LDHs and DH-CoFe LDHs. (a) LSV curves for the OER at a scan rate of 5 mV s−1; (b) the corresponding Tafel plots; (c) Nyquist plots at 1.5 V; (d) time dependence of the current density under a constant overpotential of DH-CoFe LDHs (color online).