logo

SCIENCE CHINA Chemistry, Volume 62 , Issue 10 : 1286-1299(2019) https://doi.org/10.1007/s11426-019-9519-9

Designing solid-state interfaces on lithium-metal anodes: a review

More info
  • ReceivedApr 14, 2019
  • AcceptedJun 19, 2019
  • PublishedSep 9, 2019

Abstract


Funded by

the National Key Research and Development Program(2016YFA0202500,2016YFA0200102)

the National Natural Science Foundation of China(21676160,21825501,21773264,21805062,U1801257)

Beijing Natural Science Foundation(L172023)

and Tsinghua University Initiative Scientific Research Program.


Acknowledgment

This work was supported by the National Key Research and Development Program (2016YFA0202500, 2016YFA0200102), the National Natural Science Foundation of China (21676160, 21825501, 21773264, 21805062, U1801257), Beijing Natural Science Foundation (L172023), and Tsinghua University Initiative Scientific Research Program.


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Cheng XB, Zhang R, Zhao CZ, Zhang Q. Chem Rev, 2017, 117: 10403-10473 CrossRef PubMed Google Scholar

[2] Chen X, Hou T, Persson KA, Zhang Q. Mater Today, 2019, 22: 142-158 CrossRef Google Scholar

[3] Xin S, Chang Z, Zhang X, Guo YG. Nat Sci Rev, 2017, 4: 54-70 CrossRef Google Scholar

[4] Chen S, Niu C, Lee H, Li Q, Yu L, Xu W, Zhang JG, Dufek EJ, Whittingham MS, Meng S, Xiao J, Liu J. Joule, 2019, 3: 1094-1105 CrossRef Google Scholar

[5] Zhang XQ, Zhao CZ, Huang JQ, Zhang Q. Engineering, 2018, 4: 831-847 CrossRef Google Scholar

[6] Sun YZ, Huang JQ, Zhao CZ, Zhang Q. Sci China Chem, 2017, 60: 1508-1526 CrossRef Google Scholar

[7] Li NW, Yin YX, Xin S, Li JY, Guo YG. Small Methods, 2017, 1: 1700094 CrossRef Google Scholar

[8] Ye H, Xin S, Yin YX, Guo YG. Adv Energy Mater, 2017, 7: 1700530 CrossRef Google Scholar

[9] Lu Y, Zhang Q, Chen J. Sci China Chem, 2019, 62: 533-548 CrossRef Google Scholar

[10] Duan H, Zhang J, Chen X, Zhang XD, Li JY, Huang LB, Zhang X, Shi JL, Yin YX, Zhang Q, Guo YG, Jiang L, Wan LJ. J Am Chem Soc, 2018, 140: 18051-18057 CrossRef PubMed Google Scholar

[11] Cheng XB, Zhao CZ, Yao YX, Liu H, Zhang Q. Chem, 2019, 5: 74-96 CrossRef Google Scholar

[12] Li BQ, Chen XR, Chen X, Zhao CX, Zhang R, Cheng XB, Zhang Q. Research, 2019, 2019(2): 4608940 CrossRef Google Scholar

[13] Guo YG, Chen J. Sci China Chem, 2017, 60: 1481-1482 CrossRef Google Scholar

[14] Xu X, Wang S, Wang H, Hu C, Jin Y, Liu J, Yan H. J Energy Chem, 2018, 27: 513-527 CrossRef Google Scholar

[15] Li L, Chen C, Yu A. Sci China Chem, 2017, 60: 1402-1412 CrossRef Google Scholar

[16] Li Y, Li Y, Pei A, Yan K, Sun Y, Wu CL, Joubert LM, Chin R, Koh AL, Yu Y, Perrino J, Butz B, Chu S, Cui Y. Science, 2017, 358: 506-510 CrossRef PubMed ADS Google Scholar

[17] Bieker G, Winter M, Bieker P. Phys Chem Chem Phys, 2015, 17: 8670-8679 CrossRef PubMed ADS Google Scholar

[18] Cheng H, Zhu CB, Lu M, Yang Y. J Power Sources, 2007, 174: 1027-1031 CrossRef ADS Google Scholar

[19] Sacci RL, Black JM, Balke N, Dudney NJ, More KL, Unocic RR. Nano Lett, 2015, 15: 2011-2018 CrossRef PubMed ADS Google Scholar

[20] Kanamura K, Tamura H, Shiraishi S, Takehara Z-i. J Electrochem Soc, 1995, 142: 340-347 CrossRef Google Scholar

[21] Aurbach D, Weissman I, Zaban A, Chusid O. Electrochim Acta, 1994, 39: 51-71 CrossRef Google Scholar

[22] Aurbach D. J Power Sources, 2000, 89: 206-218 CrossRef ADS Google Scholar

[23] Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. Adv Sci, 2016, 3: 1500213 CrossRef PubMed Google Scholar

[24] Peled E, Golodnitsky D, Ardel G. J Electrochem Soc, 1997, 144: L208-L210 CrossRef Google Scholar

[25] Malmgren S, Ciosek K, Hahlin M, Gustafsson T, Gorgoi M, Rensmo H, Edström K. Electrochim Acta, 2013, 97: 23-32 CrossRef Google Scholar

[26] Cheng XB, Yan C, Zhang XQ, Liu H, Zhang Q. ACS Energy Lett, 2018, 3: 1564-1570 CrossRef Google Scholar

[27] Maier J. Solid State Ion, 1995, 75: 139-145 CrossRef Google Scholar

[28] Wenzel S, Randau S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Janek J. Chem Mater, 2016, 28: 2400-2407 CrossRef Google Scholar

[29] Shen X, Cheng X, Shi P, Huang J, Zhang X, Yan C, Li T, Zhang Q. J Energy Chem, 2019, 37: 29-34 CrossRef Google Scholar

[30] Xue Y, Li Y, Zhang J, Liu Z, Zhao Y. Sci China Chem, 2018, 61: 765-786 CrossRef Google Scholar

[31] Yan C, Cheng XB, Yao YX, Shen X, Li BQ, Li WJ, Zhang R, Huang JQ, Li H, Zhang Q. Adv Mater, 2018, 30: 1804461 CrossRef PubMed Google Scholar

[32] Xu R, Sun Y, Wang Y, Huang J, Zhang Q. Chin Chem Lett, 2017, 28: 2235-2238 CrossRef Google Scholar

[33] Nolan AM, Zhu Y, He X, Bai Q, Mo Y. Joule, 2018, 2: 2016-2046 CrossRef Google Scholar

[34] Chen X, Shen X, Li B, Peng HJ, Cheng XB, Li BQ, Zhang XQ, Huang JQ, Zhang Q. Angew Chem Int Ed, 2018, 57: 734-737 CrossRef PubMed Google Scholar

[35] Chen X, Hou TZ, Li B, Yan C, Zhu L, Guan C, Cheng XB, Peng HJ, Huang JQ, Zhang Q. Energy Storage Mater, 2017, 8: 194-201 CrossRef Google Scholar

[36] Chen X, Li H‐, Shen X, Zhang Q. Angew Chem, 2018, 130: 16885-16889 CrossRef Google Scholar

[37] Chen X, Zhang XQ, Li HR, Zhang Q. Batteries Supercaps, 2019, 2: 128-131 CrossRef Google Scholar

[38] Yan C, Yao YX, Chen X, Cheng XB, Zhang XQ, Huang JQ, Zhang Q. Angew Chem, 2018, 130: 14251-14255 CrossRef Google Scholar

[39] Cui J, Zhan TG, Zhang KD, Chen D. Chin Chem Lett, 2017, 28: 2171-2179 CrossRef Google Scholar

[40] Zhang XQ, Chen X, Xu R, Cheng XB, Peng HJ, Zhang R, Huang JQ, Zhang Q. Angew Chem Int Ed, 2017, 56: 14207-14211 CrossRef PubMed Google Scholar

[41] Cheng XB, Zhao MQ, Chen C, Pentecost A, Maleski K, Mathis T, Zhang XQ, Zhang Q, Jiang J, Gogotsi Y. Nat Commun, 2017, 8: 336 CrossRef PubMed ADS Google Scholar

[42] Gao Y, Yan Z, Gray JL, He X, Wang D, Chen T, Huang Q, Li YC, Wang H, Kim SH, Mallouk TE, Wang D. Nat Mater, 2019, 18: 384-389 CrossRef PubMed ADS Google Scholar

[43] Zhao Q, Tu Z, Wei S, Zhang K, Choudhury S, Liu X, Archer LA. Angew Chem Int Ed, 2018, 57: 992-996 CrossRef PubMed Google Scholar

[44] Xu R, Zhang XQ, Cheng XB, Peng HJ, Zhao CZ, Yan C, Huang JQ. Adv Funct Mater, 2018, 28: 1705838 CrossRef Google Scholar

[45] Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Nat Energy, 2019, 4: 365-373 CrossRef ADS Google Scholar

[46] Yan C, Cheng XB, Tian Y, Chen X, Zhang XQ, Li WJ, Huang JQ, Zhang Q. Adv Mater, 2018, 30: 1707629 CrossRef PubMed Google Scholar

[47] Cheng XB, Yan C, Peng HJ, Huang JQ, Yang ST, Zhang Q. Energy Storage Mater, 2018, 10: 199-205 CrossRef Google Scholar

[48] Zhao CZ, Cheng XB, Zhang R, Peng HJ, Huang JQ, Ran R, Huang ZH, Wei F, Zhang Q. Energy Storage Mater, 2016, 3: 77-84 CrossRef Google Scholar

[49] Cheng XB, Yan C, Chen X, Guan C, Huang JQ, Peng HJ, Zhang R, Yang ST, Zhang Q. Chem, 2017, 2: 258-270 CrossRef Google Scholar

[50] Zhang R, Chen X, Shen X, Zhang XQ, Chen XR, Cheng XB, Yan C, Zhao CZ, Zhang Q. Joule, 2018, 2: 764-777 CrossRef Google Scholar

[51] Zhang XQ, Chen X, Cheng XB, Li BQ, Shen X, Yan C, Huang JQ, Zhang Q. Angew Chem Int Ed, 2018, 57: 5301-5305 CrossRef PubMed Google Scholar

[52] Zhang XQ, Chen X, Hou LP, Li BQ, Cheng XB, Huang JQ, Zhang Q. ACS Energy Lett, 2019, 4: 411-416 CrossRef Google Scholar

[53] Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C. Sci Adv, 2018, 4: eaau9245 CrossRef PubMed Google Scholar

[54] Wang DY, Sinha NN, Burns JC, Aiken CP, Petibon R, Dahn JR. J Electrochem Soc, 2014, 161: A467-A472 CrossRef Google Scholar

[55] Nie M, Demeaux J, Young BT, Heskett DR, Chen Y, Bose A, Woicik JC, Lucht BL. J Electrochem Soc, 2015, 162: A7008-A7014 CrossRef Google Scholar

[56] Kohl M, Borrmann F, Althues H, Kaskel S. Adv Energy Mater, 2016, 6: 1502185 CrossRef Google Scholar

[57] Shkrob IA, Wishart JF, Abraham DP. J Phys Chem C, 2015, 119: 14954-14964 CrossRef Google Scholar

[58] Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C. Small, 2015, 11: 473-481 CrossRef PubMed Google Scholar

[59] Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q. Adv Funct Mater, 2017, 27: 1605989 CrossRef Google Scholar

[60] Lu Y, Tu Z, Archer LA. Nat Mater, 2014, 13: 961-969 CrossRef PubMed ADS arXiv Google Scholar

[61] von Wald Cresce A, Borodin O, Xu K. J Phys Chem C, 2012, 116: 26111-26117 CrossRef Google Scholar

[62] Jiao S, Ren X, Cao R, Engelhard MH, Liu Y, Hu D, Mei D, Zheng J, Zhao W, Li Q, Liu N, Adams BD, Ma C, Liu J, Zhang JG, Xu W. Nat Energy, 2018, 3: 739-746 CrossRef ADS Google Scholar

[63] Ren X, Zou L, Jiao S, Mei D, Engelhard MH, Li Q, Lee H, Niu C, Adams BD, Wang C, Liu J, Zhang JG, Xu W. ACS Energy Lett, 2019, 4: 896-902 CrossRef Google Scholar

[64] Zhao Q, Chen P, Li S, Liu X, Archer LA. J Mater Chem A, 2019, 7: 7823-7830 CrossRef Google Scholar

[65] Li NW, Yin YX, Yang CP, Guo YG. Adv Mater, 2016, 28: 1853-1858 CrossRef PubMed Google Scholar

[66] Li NW, Shi Y, Yin YX, Zeng XX, Li JY, Li CJ, Wan LJ, Wen R, Guo YG. Angew Chem Int Ed, 2018, 57: 1505-1509 CrossRef PubMed Google Scholar

[67] Ye H, Yin YX, Zhang SF, Shi Y, Liu L, Zeng XX, Wen R, Guo YG, Wan LJ. Nano Energy, 2017, 36: 411-417 CrossRef Google Scholar

[68] Wei S, Cheng Z, Nath P, Tikekar MD, Li G, Archer LA. Sci Adv, 2018, 4: eaao6243 CrossRef PubMed Google Scholar

[69] Li NW, Yin YX, Li JY, Zhang CH, Guo YG. Adv Sci, 2017, 4: 1600400 CrossRef PubMed Google Scholar

[70] Zheng Q, Yi H, Li X, Zhang H. J Energy Chem, 2018, 27: 1597-1617 CrossRef Google Scholar

[71] Ji X, Zeng H, Gong X, Tsai F, Jiang T, Li RKY, Shi H, Luan S, Shi D. J Mater Chem A, 2017, 5: 24444-24452 CrossRef Google Scholar

[72] Wang Y, Zhang Y, Hou H. J Appl Electrochem, 2017, 47: 237-248 CrossRef Google Scholar

[73] Lyu YF, Zhang ZJ, Liu C, Geng Z, Gao LC, Chen Q. Chin J Polym Sci, 2018, 36: 78-84 CrossRef Google Scholar

[74] Yang C, Zhang L, Liu B, Xu S, Hamann T, McOwen D, Dai J, Luo W, Gong Y, Wachsman ED, Hu L. Proc Natl Acad Sci USA, 2018, 115: 3770-3775 CrossRef PubMed Google Scholar

[75] Zhou D, Liu R, Zhang J, Qi X, He YB, Li B, Yang QH, Hu YS, Kang F. Nano Energy, 2017, 33: 45-54 CrossRef Google Scholar

[76] Sugihara N, Nishimura K, Nishino H, Kanehashi S, Mayumi K, Tominaga Y, Shimomura T, Ito K. Electrochim Acta, 2017, 229: 166-172 CrossRef Google Scholar

[77] Paranjape N, Mandadapu PC, Wu G, Lin H. Polymer, 2017, 111: 1-8 CrossRef Google Scholar

[78] Zeng XX, Yin YX, Li NW, Du WC, Guo YG, Wan LJ. J Am Chem Soc, 2016, 138: 15825-15828 CrossRef PubMed Google Scholar

[79] Duan H, Yin YX, Zeng XX, Li JY, Shi JL, Shi Y, Wen R, Guo YG, Wan LJ. Energy Storage Mater, 2018, 10: 85-91 CrossRef Google Scholar

[80] Zhu Y, He X, Mo Y. ACS Appl Mater Interfaces, 2015, 7: 23685-23693 CrossRef Google Scholar

[81] Thangadurai V, Narayanan S, Pinzaru D. Chem Soc Rev, 2014, 43: 4714-4727 CrossRef PubMed Google Scholar

[82] Xin S, You Y, Wang S, Gao HC, Yin YX, Guo YG. ACS Energy Lett, 2017, 2: 1385-1394 CrossRef Google Scholar

[83] Canepa P, Dawson JA, Sai Gautam G, Statham JM, Parker SC, Islam MS. Chem Mater, 2018, 30: 3019-3027 CrossRef Google Scholar

[84] van den Broek J, Afyon S, Rupp JLM. Adv Energy Mater, 2016, 6: 1600736 CrossRef Google Scholar

[85] Fu KK, Gong Y, Hitz GT, McOwen DW, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel G, Dai J, Liu B, Xie H, Yao Y, Wachsman ED, Hu L. Energy Environ Sci, 2017, 10: 1568-1575 CrossRef Google Scholar

[86] Zhang XD, Shi JL, Liang JY, Yin YX, Guo YG, Wan LJ. Sci China Chem, 2017, 60: 1554-1560 CrossRef Google Scholar

[87] Liu B, Gong Y, Fu K, Han X, Yao Y, Pastel G, Yang C, Xie H, Wachsman ED, Hu L. ACS Appl Mater Interfaces, 2017, 9: 18809-18815 CrossRef Google Scholar

[88] Chinnam PR, Wunder SL. ACS Energy Lett, 2017, 2: 134-138 CrossRef Google Scholar

[89] Wang Q, Wen Z, Jin J, Guo J, Huang X, Yang J, Chen C. Chem Commun, 2016, 52: 1637-1640 CrossRef PubMed Google Scholar

[90] Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. J Am Chem Soc, 2016, 138: 9385-9388 CrossRef PubMed Google Scholar

[91] Zhao E, Yu X, Wang F, Li H. Sci China Chem, 2017, 60: 1483-1493 CrossRef Google Scholar

[92] Duan H, Yin YX, Shi Y, Wang PF, Zhang XD, Yang CP, Shi JL, Wen R, Guo YG, Wan LJ. J Am Chem Soc, 2018, 140: 82-85 CrossRef PubMed Google Scholar

[93] Duan H, Fan M, Chen WP, Li JY, Wang PF, Wang WP, Shi JL, Yin YX, Wan LJ, Guo YG. Adv Mater, 2018, 31: 1807789 CrossRef PubMed Google Scholar

[94] Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough JB. Adv Mater, 2019, 31: 1805574 CrossRef PubMed Google Scholar

[95] Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao YC, Wei F, Mai L. Joule, 2018, 2: 1991-2015 CrossRef Google Scholar

[96] Jin Y, Liu K, Lang J, Zhuo D, Huang Z, Wang C, Wu H, Cui Y. Nat Energy, 2018, 3: 732-738 CrossRef ADS Google Scholar

[97] Zhu M, Wu J, Wang Y, Song M, Long L, Siyal SH, Yang X, Sui G. J Energy Chem, 2019, 37: 126-142 CrossRef Google Scholar

[98] Liu J, Zhang L, Li H, Zhao P, Ren P, Shi W, Cheng P. Sci China Chem, 2019, 62: 602-608 CrossRef Google Scholar

[99] Zhang J, Yuan T, Wan H, Qian J, Ai X, Yang H, Cao Y. Sci China Chem, 2017, 60: 1546-1553 CrossRef Google Scholar

[100] Liu FQ, Wang WP, Yin YX, Zhang SF, Shi JL, Wang L, Zhang XD, Zheng Y, Zhou JJ, Li L, Guo YG. Sci Adv, 2018, 4: eaat5383 CrossRef PubMed ADS Google Scholar

[101] Liu Q, Geng Z, Han C, Fu Y, Li S, He Y, Kang F, Li B. J Power Sources, 2018, 389: 120-134 CrossRef ADS Google Scholar

[102] Porz L, Swamy T, Sheldon BW, Rettenwander D, Frömling T, Thaman HL, Berendts S, Uecker R, Carter WC, Chiang YM. Adv Energy Mater, 2017, 7: 1701003 CrossRef Google Scholar

[103] Chen B, Xu C, Wang H, Zhou J. Curr Appl Phys, 2019, 19: 149-154 CrossRef ADS Google Scholar

[104] Monroe C, Newman J. J Electrochem Soc, 2004, 151: A880 CrossRef Google Scholar

[105] Monroe C, Newman J. J Electrochem Soc, 2005, 152: A396 CrossRef Google Scholar

[106] Zeng XX, Yin YX, Shi Y, Zhang XD, Yao HR, Wen R, Wu XW, Guo YG. Chem, 2018, 4: 298-307 CrossRef Google Scholar

[107] Choudhury S, Vu D, Warren A, Tikekar MD, Tu Z, Archer LA. Proc Natl Acad Sci USA, 2018, 115: 6620-6625 CrossRef PubMed ADS Google Scholar

[108] Zhao CZ, Zhang XQ, Cheng XB, Zhang R, Xu R, Chen PY, Peng HJ, Huang JQ, Zhang Q. Proc Natl Acad Sci USA, 2017, 114: 11069-11074 CrossRef PubMed Google Scholar

[109] Zheng J, Hu YY. ACS Appl Mater Interfaces, 2018, 10: 4113-4120 CrossRef Google Scholar

[110] Zheng J, Tang M, Hu YY. Angew Chem Int Ed, 2016, 55: 12538-12542 CrossRef PubMed Google Scholar

[111] Yang T, Zheng J, Cheng Q, Hu YY, Chan CK. ACS Appl Mater Interfaces, 2017, 9: 21773-21780 CrossRef Google Scholar

[112] Zhang X, Liu T, Zhang S, Huang X, Xu B, Lin Y, Xu B, Li L, Nan CW, Shen Y. J Am Chem Soc, 2017, 139: 13779-13785 CrossRef PubMed Google Scholar

[113] Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan CW. Adv Mater, 2019, 31: 1806082 CrossRef PubMed Google Scholar

[114] Murugan R, Thangadurai V, Weppner W. Angew Chem Int Ed, 2007, 46: 7778-7781 CrossRef Google Scholar

[115] Li H. Joule, 2019, 3: 911-914 CrossRef Google Scholar

  • Figure 1

    MCI in the interfacial film of a Li-metal and electrolyte. (a) MCI between the Li metal and SSE (left) and MCI as an inner layer between the SEI and Li metal (right) [26]. (b) Schematic diagram of an armored MCI and its functions on Li plating. Left: The introduction of Cu atoms improves the ionic conductivity of the LiF/Cu-based MCI film by providing more diffusion domains and the Li storage at the grain boundary regions of LiF/Cu compared to the poor ionic conductivity of the LiF-rich SEI film; right: Armored MCI possesses a high surface energy to achieve a uniform Li-ion distribution, high ionic conductivity to render rapid Li-ion diffusion, and high Young’s modulus to suppress the growth of Li dendrites [31] (color online).

  • Figure 2

    Analysis of ion-solvent complexes. (a) Frontier molecular orbital theory analysis. Frontier molecular orbital levels of PC (single PC molecule), PC+Sol (PC molecule with solvent effects considered), [NaPC] (Na-atom-PC complex) and [NaPC]+ (Na+-ion-PC complex). The red and green regions represent the positive and negative parts of the LUMO and HOMO wave functions, respectively (isovalue: 0.02). The hydrogen, lithium, carbon, and oxygen atoms are marked with white, purple, gray, and red, respectively [34]. (b) The visual LUMOs and corresponding optimized geometrical structures of ion-solvent complexes. (i) Li+-DOL; (ii) Na+-1,3-dioxolane (DOL); (iii) K+-DOL; (iv) Mg2+-DOL; (v) Ca2+-DOL; (vi) Li+-1,2-dimethoxyethane (DME); (vii) Na+-DME; (viii) K+-DME; (ix) Mg2+- DME; (x) Ca2+-DME. H white, Li purple, C gray, O red, Na green, Mg blue, K yellow, Ca orange. The red and green regions of LUMOs represent the positive and negative parts of orbitals, respectively [36] (color online).

  • Figure 3

    Ex situ formed interfacial layers. (a) Schematic illustrations of Li deposition without protection, lithium metal dendrites and dead Li forms after cycling; with a pure PVDF-HFP layer that is of poor mechanical modulus, interfacial fluctuation with dendrites piercing the PVDF-HFP layer occur after cycling; and with composite layer composed of organic PVDF-HFP and inorganic LiF that is conformal and mechanically strong to suppress Li dendrites penetration and stabilize Li metal surface [44]. (b) Schematic diagram of the dual-layered film formed on the Li-metal anode via FEC treatments. The organic and inorganic layers are achieved on the Li surface by spontaneous reactions between the Li-metal and FEC. The dual-layered film can regulate the uniform deposition of Li-ions during repeated charge/discharge cycles and protect the Li-metal anode without dendrite formation [46]. (c) Schematic of the ex situ SEI construction and morphology of the induced Li plate. Ex situ SEI construction on the Li plate by electrochemical methods in the 1.0 M LiTFSI-DOL/DME electrolyte with 0.020 M Li2S5-5.0 wt% LiNO3 hybrid additives and its applications in Li-S and Li-NCM batteries [49] (color online).

  • Figure 4

    In situ-formed interfacial layers induced by ion-solvent complexes. (a) Natural abundance 17O NMR spectra of LiFSI/LiNO3 and related electrolytes measured at 50 °C. (b) Top panel: snapshots of the MD simulation boxes for the LiFSI/LiNO3 and LiFSI electrolyte. Colors for different atoms: H-white, Li-purple, C-gray, O-red, N-blue, F-green, and S-yellow. The unsolvated solvents are in light gray. Bottom panel: schematics of the solvation structure of Li-ions in the corresponding electrolyte [52]. (c) XPS spectra of the SEI layer in 5% FEC electrolytes. F 1s spectra of the SEI layer induced by 0% and 5% FEC after Li stripping on a Cu substrate after ten cycles [59]. (d, e) The schematics of the solvation sheath of Li-ions and the SEI formed in FEC/LiNO3 electrolytes in which PF6 is not shown for clear comparison. The cycling performance of Li|LiFePO4 pouch cells with a theoretical capacity of 0.25 A h at 0.2 C after one cycle at 0.05 C. Here 50-mm-thick Li foils were used as the anodes [51] (color online).

  • Figure 5

    In situ-formed interfacial layers induced by electrolyte additives. (a) Schematics of the different Li anode structures. General Li-metal and Li3PO4-modified Li-metal anodes during SEI formation and cycling [65]. (b) The flexible PAA layer that decreases the Li dendrite growth by self-adapting interface regulation [66]. (c) Schematic diagrams showing the Li plating process in the electrolyte with the AlCl3 additive [67] (color online).

  • Figure 6

    Interpenetrating network and double network structure. (a) Schematic diagram and (b) Young’s modulus mapping of an ipn-PEA electrolyte [78]. (c) Schematic diagram, (d) DSC, and (e) ionic conductivity of DN-SPE [79] (color online).

  • Figure 7

    Porous structure of a solid electrolyte. (a) SEM images of sintered pellet cross-sections with composite nano-Li4Ti5O12 electrodes for nonmodified (left) and interface-engineered (right) pellets [84]. (b) Schematic of a hybrid solid-state bilayer Li-S battery. (c) Voltage profile of the hybrid bilayer Li-S cell with a high sulfur mass loading of approximately 7.5 mg cm−2 at 0.2 mA cm−2 [85]. (d) Cross-sectional SEM image of the 3D garnet host. (e) Discharge/charge voltage profiles of the Li cycling in the garnet host at 0.5 mA cm−2 [74] (color online).

  • Figure 8

    Asymmetric solid electrolyte. Schematic of SEs to overcome the inconsistent (a) mechanical [92] and (b) electrochemical stability issues. (c) Electrochemical window of the SE was expended to 0–5 V. (d) Electrochemical performance of SLMBs with the structured SE and NCM811 cathode [93] (color online).

  • Figure 9

    SE/Li-metal anode interface. (a) Schematic model of the polymerization mechanism of DOL induced by LiPF6. (b) Schematic diagram of the in situ polymerization inside the Li-S battery system [100]. (c) Schematic of the in situ preparation of the fluorinated SE interphase between the Li-metal anode and LPS SE. The optimized structures of the three interface structures [53]. (d) Schematic of different interface structures in the Li|i-QSE|LFP battery, including the repellent layer between the Li anode and i-QSE [106]. (e) Schematic illustrating the immobilized anions tethered to ceramic particles and polymer chains for achieving a dendrite-free Li anode [108] (color online).

  • Figure 10

    6Li NMR comparison of pristine and cycled composite electrolytes and a schematic of the possible Li+ transport pathways. (a) LLZO-PEO (LiTFSI) with different fractions of LLZO [109], (b) LLZO-PEO (LiClO4) [110], and (c) LLZO-PAN (LiClO4) [111]. (d) Possible complex structures of the LLZTO-based PVDF composite electrolyte at the molecular level [112] (color online).