logo

Cascaded DNA circuits-programmed self-assembly of spherical nucleic acids for high signal amplification

More info
  • ReceivedAug 6, 2019
  • AcceptedAug 29, 2019
  • PublishedOct 21, 2019

Abstract

Signal amplification is an important issue in DNA nanotechnology and molecular diagnostics. In this work, we report a strategy for the catalytic self-assembly of spherical nucleic acids (SNAs) programmed by two-layer cascaded DNA circuits through integrating an entropy-driven catalytic network, a catalytic hairpin assembly circuit, and a facile SNA assembly-based reporter system. This integrated system could implement ~100,000-fold signal amplification in the presence of 1 pM of input target. Possessing powerful amplification ability of nucleic acid signal, our strategy should be of great potential in fabricating more robust dynamic networks to be applied for signal transduction, DNA computing, and nucleic acid-based diagnostics.


Funded by

the National Natural Science Foundation of China(91427304,21434007,51573175)

the Fundamental Research Funds for the Central Universities(WK3450000002,WK2060200026)

the Financial Grant from the China Postdoctoral Science Foundation(2018M630708)

and the National Postdoctoral Program for Innovative Talents(BX20180285)

the Excellent Talent Foundation of Education Department of Anhui Province(gxyq2019066)

and the 136 Talent Plan of Hefei Normal University.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (91427304, 21434007, 51573175), the Fundamental Research Funds for the Central Universities (WK3450000002, WK2060200026, WK9110000005), the Financial Grant from the China Postdoctoral Science Foundation (2018M630708), and the National Postdoctoral Program for Innovative Talents (BX20180285). This work was additionally supported by the Foundations of Educational Committee of Anhui Province (KJ2019A0719), the Excellent Talent Foundation of Education Department of Anhui Province (gxyq2019066), and the 136 Talent Plan of Hefei Normal University.


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. Nature, 1996, 382: 607-609 CrossRef PubMed ADS Google Scholar

[2] Cutler JI, Auyeung E, Mirkin CA. J Am Chem Soc, 2012, 134: 1376-1391 CrossRef PubMed Google Scholar

[3] Liu J, Lu Y. J Am Chem Soc, 2003, 125: 6642-6643 CrossRef PubMed Google Scholar

[4] Baeissa A, Dave N, Smith BD, Liu J. ACS Appl Mater Interfaces, 2010, 2: 3594-3600 CrossRef PubMed Google Scholar

[5] Song T, Xiao S, Yao D, Huang F, Hu M, Liang H. Adv Mater, 2014, 26: 6181-6185 CrossRef PubMed Google Scholar

[6] Li Y, Wang GA, Mason SD, Yang X, Yu Z, Tang Y, Li F. Chem Sci, 2018, 9: 6434-6439 CrossRef PubMed Google Scholar

[7] Wang B, Zhou X, Yao D, Sun X, He M, Wang X, Yin X, Liang H. Chem Commun, 2017, 53: 10950-10953 CrossRef PubMed Google Scholar

[8] Yao D, Wang B, Xiao S, Song T, Huang F, Liang H. Langmuir, 2015, 31: 7055-7061 CrossRef PubMed Google Scholar

[9] Yao D, Song T, Zheng B, Xiao S, Huang F, Liang H. Nanotechnology, 2015, 26: 425601 CrossRef PubMed ADS Google Scholar

[10] He X, Zeng T, Li Z, Wang G, Ma N. Angew Chem Int Ed, 2016, 55: 3073-3076 CrossRef PubMed Google Scholar

[11] Liang CP, Ma PQ, Liu H, Guo X, Yin BC, Ye BC. Angew Chem Int Ed, 2017, 56: 9077-9081 CrossRef PubMed Google Scholar

[12] Li H, Zhou X, Yao D, Liang H. Chem Commun, 2018, 54: 3520-3523 CrossRef PubMed Google Scholar

[13] Kyriazi ME, Giust D, El-Sagheer AH, Lackie PM, Muskens OL, Brown T, Kanaras AG. ACS Nano, 2018, 12: 3333-3340 CrossRef Google Scholar

[14] Li Y, Liu Z, Yu G, Jiang W, Mao C. J Am Chem Soc, 2015, 137: 4320-4323 CrossRef PubMed Google Scholar

[15] Ohta S, Glancy D, Chan WCW. Science, 2016, 351: 841-845 CrossRef PubMed ADS Google Scholar

[16] Zhao Z, Chen C, Dong Y, Yang Z, Fan QH, Liu D. Angew Chem Int Ed, 2014, 53: 13468-13470 CrossRef PubMed Google Scholar

[17] Macfarlane RJ, Lee B, Jones MR, Harris N, Schatz GC, Mirkin CA. Science, 2011, 334: 204-208 CrossRef PubMed ADS Google Scholar

[18] Laramy CR, O’Brien MN, Mirkin CA. Nat Rev Mater, 2019, 4: 201-224 CrossRef ADS Google Scholar

[19] Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL. Nature, 2000, 406: 605-608 CrossRef PubMed Google Scholar

[20] Tian Y, Mao C. J Am Chem Soc, 2004, 126: 11410-11411 CrossRef PubMed Google Scholar

[21] Jung C, Allen PB, Ellington AD. Nat Nanotech, 2016, 11: 157-163 CrossRef PubMed ADS Google Scholar

[22] Thubagere AJ, Li W, Johnson RF, Chen Z, Doroudi S, Lee YL, Izatt G, Wittman S, Srinivas N, Woods D, Winfree E, Qian L. Science, 2017, 357: eaan6558 CrossRef PubMed Google Scholar

[23] Yin P, Choi HMT, Calvert CR, Pierce NA. Nature, 2008, 451: 318-322 CrossRef PubMed ADS Google Scholar

[24] Kopperger E, List J, Madhira S, Rothfischer F, Lamb DC, Simmel FC. Science, 2018, 359: 296-301 CrossRef PubMed ADS Google Scholar

[25] Srinivas N, Parkin J, Seelig G, Winfree E, Soloveichik D. Science, 2017, 358: eaal2052 CrossRef PubMed Google Scholar

[26] Huang F, Xu H, Tan W, Liang H. ACS Nano, 2014, 8: 6849-6855 CrossRef PubMed Google Scholar

[27] Huang F, Zhang J, Li T, Duan R, Xia F, Willner I. Nano Lett, 2019, 19: 618-625 CrossRef PubMed ADS Google Scholar

[28] Qian L, Winfree E. Science, 2011, 332: 1196-1201 CrossRef PubMed ADS Google Scholar

[29] Cherry KM, Qian L. Nature, 2018, 559: 370-376 CrossRef PubMed ADS Google Scholar

[30] Zhang DY, Turberfield AJ, Yurke B, Winfree E. Science, 2007, 318: 1121-1125 CrossRef PubMed ADS Google Scholar

[31] Li B, Ellington AD, Chen X. Nucleic Acids Res, 2011, 39: e110 CrossRef PubMed Google Scholar

[32] Chen X, Briggs N, McLain JR, Ellington AD. Proc Natl Acad Sci USA, 2013, 110: 5386-5391 CrossRef PubMed ADS Google Scholar

[33] Zhang Z, Fan TW, Hsing IM. Nanoscale, 2017, 9: 2748-2754 CrossRef PubMed Google Scholar

[34] Xiong E, Zhen D, Jiang L. Chem Commun, 2018, 54: 12594-12597 CrossRef PubMed Google Scholar

[35] Wu C, Cansiz S, Zhang L, Teng IT, Qiu L, Li J, Liu Y, Zhou C, Hu R, Zhang T, Cui C, Cui L, Tan W. J Am Chem Soc, 2015, 137: 4900-4903 CrossRef PubMed Google Scholar

[36] Yue S, Song X, Song W, Bi S. Chem Sci, 2019, 10: 1651-1658 CrossRef PubMed Google Scholar

[37] Amodio A, Zhao B, Porchetta A, Idili A, Castronovo M, Fan C, Ricci F. J Am Chem Soc, 2014, 136: 16469-16472 CrossRef PubMed Google Scholar

[38] Yao D, Li H, Guo Y, Zhou X, Xiao S, Liang H. Chem Commun, 2016, 52: 7556-7559 CrossRef PubMed Google Scholar

[39] Zhang DY, Hariadi RF, Choi HMT, Winfree E. Nat Commun, 2013, 4: 1965 CrossRef PubMed ADS Google Scholar

[40] Jin R, Wu G, Li Z, Mirkin CA, Schatz GC. J Am Chem Soc, 2003, 125: 1643-1654 CrossRef PubMed Google Scholar

[41] Yao D, Song T, Sun X, Xiao S, Huang F, Liang H. J Am Chem Soc, 2015, 137: 14107-14113 CrossRef PubMed Google Scholar

[42] Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA. J Comput Chem, 2011, 32: 170-173 CrossRef PubMed Google Scholar

[43] Storhoff JJ, Elghanian R, Mirkin CA, Letsinger RL. Langmuir, 2002, 18: 6666-6670 CrossRef Google Scholar

[44] Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. J Am Chem Soc, 1998, 120: 1959-1964 CrossRef Google Scholar

[45] Oishi M, Sugiyama S. Small, 2016, 12: 5153-5158 CrossRef PubMed Google Scholar

[46] Guo L, Xu Y, Ferhan AR, Chen G, Kim DH. J Am Chem Soc, 2013, 135: 12338-12345 CrossRef PubMed Google Scholar

[47] Yao D, Xiao S, Zhou X, Li H, Wang B, Wei B, Liang H. J Mater Chem B, 2017, 5: 6256-6265 CrossRef Google Scholar

[48] Wei B, Yao D, Zheng B, Zhou X, Guo Y, Li X, Li C, Xiao S, Liang H. ACS Appl Mater Interfaces, 2019, 11: 19724-19733 CrossRef Google Scholar

  • Figure 1

    Schematic representation of the self-assembly of SNA programmed by two-layer cascaded DNA circuits (color online).

  • Figure 2

    (a) Influence of the amounts of duplex-linker on the aggregation rate of SNA. Here, [SNA]=8 nM, [T]=800 nM. (b) Kinetics of the SNA assembly by directly adding different concentrations of T. In this experiment, [SNA]=8 nM, [duplex-linker]:[SNA]=40 (color online).

  • Figure 3

    (a) Kinetics of the assembly of SNA programmed by EDCN with the addition of different concentrations of C2. (b) The corresponding color changes of the one-layer catalytic system after 9 h of reaction. [SNA]=8 nM, [duplex-linker]:[SNA]=40, [S]=640 nM, and [F]=1,280 nM (color online).

  • Figure 4

    (a) Kinetics of the SNA self-assembly programmed by two-layer cascaded DNA circuits in the presence of different concentrations of C1. (b) The corresponding color image of the two-layer catalytic system taken after 7 h of reaction. [SNA]=8 nM, [duplex-linker]:[SNA]=40, [S]=640 nM, [F]=1,280 nM, [H1]=16 nM, and [H2]=32 nM (color online).

  • Figure 5

    Specificity investigation of the two-layer catalytic system. [SNA]=8 nM, [duplex-linker]:[SNA]=40, [S]=640 nM, [F]=1,280 nM, [H1]=16 nM, [H2]=32 nM, and [C1]=[Sm]=[Tm]=[Random]=200 pM (color online).

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号