logo

SCIENCE CHINA Chemistry, Volume 62 , Issue 11 : 1542-1546(2019) https://doi.org/10.1007/s11426-019-9627-x

Trifluoromethyl radical triggered radical cyclization of N-benzoyl ynamides leading to isoindolinones

More info
  • ReceivedAug 30, 2019
  • AcceptedSep 25, 2019
  • PublishedOct 21, 2019

Abstract

Under photocatalytic reductive conditions, trifluoromethyl radical addition onto an ynamide followed by cyclization on a benzoyl moiety produces diverse isoindolinone platforms with good yields. The selectivity of the radical cyclization, N-benzoyl vs. N-benzyl as radical acceptor and the E/Z ratio of isomers have been rationalized by modeling.


Acknowledgment

We thank Sorbonne Université, CNRS and Servier for funding. The authors wish to acknowledge the analytical department of IDRS - Servier for the compounds analyses (IR, NMR, HR-MS) and the SRIMC department for the syntheses on big scale. This work was granted access to the high performance computing (HPC) resources of the HPCaVe Centre at Sorbonne Université and to the HPC resources of IDRIS under the allocation 2018-A0050810312 made by GENCI. The authors wish to acknowledge support from the ICMG Chemistry Nanobio Platform-PCECIC, Grenoble, for calculations facilities. Jérémy Forté is acknowledged for the X-ray diffraction analyses as well as Conor Dent Cullen and Scott Warchal for proofreading the manuscript.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Albert M, Fensterbank L, Lacôte E, Malacria M. Tandem radical reactions. In: Gansäuer A, Ed. Topics Current Chemistry. Vol 264. Berlin: Springer, 2006. 1–62. Google Scholar

[2] Baralle A, Baroudi A, Daniel M, Fensterbank L, Goddard JP, Lacôte E, Larraufie MH, Maestri G, Malacria M, Ollivier C. Radical cascade reactions. In: Chatgilialoglu C, Studer A, Eds. Encyclopedia of Radicals in Chemistry, Biology and Materials. Chichester: John Wiley & Sons, 2012. 729–766. Google Scholar

[3] Godineau E, Landais Y. Chem Eur J, 2009, 15: 3044-3055 CrossRef PubMed Google Scholar

[4] Liautard V, Landais Y. Free-radical multicomponent processes. In: Zhu J, Wang Q, Wang MX, Eds. Multicomponent Reactions. 2nd Ed. Weinheim: Wiley, 2014. 401–438. Google Scholar

[5] Chen JR, Yu XY, Xiao WJ. Synthesis, 2015, 47: 604-629 CrossRef Google Scholar

[6] Zhang Y, Sun K, Lv Q, Chen X, Qu L, Yu B. Chin Chem Lett, 2019, 30: 1361-1368 CrossRef Google Scholar

[7] Xuan J, Studer A. Chem Soc Rev, 2017, 46: 4329-4346 CrossRef PubMed Google Scholar

[8] Huang HM, Garduño-Castro MH, Morrill C, Procter DJ. Chem Soc Rev, 2019, 48: 4626-4638 CrossRef PubMed Google Scholar

[9] Dutta S, Mallick RK, Prasad R, Gandon V, Sahoo AK. Angew Chem Int Ed, 2019, 58: 2289-2294 CrossRef PubMed Google Scholar

[10] Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem Rev, 2014, 114: 2432-2506 CrossRef PubMed Google Scholar

[11] Dagousset G, Carboni A, Masson G, Magnier E. Visible light-induced (per)fluoroalkylation by photoredox catalysis. In: Groult H, Leroux FR, Tressaud A, Eds. Modern Synthesis Process and Reactivity of Fluorinated Compounds: Progress in Fluorine Science. Amsterdam: Elsevier, 2017. 389–426. Google Scholar

[12] Oh E, Kim H, Han S. Synthesis, 2018, 50: 3346-3358 CrossRef Google Scholar

[13] Fuentes N, Kong W, Fernández-Sánchez L, Merino E, Nevado C. J Am Chem Soc, 2015, 137: 964-973 CrossRef PubMed Google Scholar

[14] Zheng J, Deng Z, Zhang Y, Cui S. Adv Synth Catal, 2016, 358: 746-751 CrossRef Google Scholar

[15] Li Y, Lu Y, Qiu G, Ding Q. Org Lett, 2014, 16: 4240-4243 CrossRef PubMed Google Scholar

[16] Noto N, Miyazawa K, Koike T, Akita M. Org Lett, 2015, 17: 3710-3713 CrossRef PubMed Google Scholar

[17] Banerjee B, Litvinov DN, Kang J, Bettale JD, Castle SL. Org Lett, 2010, 12: 2650-2652 CrossRef PubMed Google Scholar

[18] Sato A, Yorimitsu H, Oshima K. Synlett, 2009: 28–31. Google Scholar

[19] Marion F, Courillon C, Malacria M. Org Lett, 2003, 5: 5095-5097 CrossRef PubMed Google Scholar

[20] Marion F, Coulomb J, Servais A, Courillon C, Fensterbank L, Malacria M. Tetrahedron, 2006, 62: 3856-3871 CrossRef Google Scholar

[21] Balieu S, Toutah K, Carro L, Chamoreau LM, Rousselière H, Courillon C. Tetrahedron Lett, 2011, 52: 2876-2880 CrossRef Google Scholar

[22] Baguia H, Deldaele C, Romero E, Michelet B, Evano G. Synthesis, 2018, 50: 3022-3030 CrossRef Google Scholar

[23] Wang CS, Dixneuf PH, Soulé JF. Chem Rev, 2018, 118: 7532-7585 CrossRef PubMed Google Scholar

[24] Staveness D, Bosque I, Stephenson CRJ. Acc Chem Res, 2016, 49: 2295-2306 CrossRef PubMed Google Scholar

[25] Shaw MH, Twilton J, MacMillan DWC. J Org Chem, 2016, 81: 6898-6926 CrossRef PubMed Google Scholar

[26] Pawlowski R, Stanek F, Stodulski M. Molecules, 2019, 24: 1533-1566 CrossRef PubMed Google Scholar

[27] Festa AA, Voskressensky LG, Van der Eycken EV. Chem Soc Rev, 2019, 48: 4401-4423 CrossRef PubMed Google Scholar

[28] Chen JR, Hu XQ, Lu LQ, Xiao WJ. Acc Chem Res, 2016, 49: 1911-1923 CrossRef PubMed Google Scholar

[29] Tanoury G. Synthesis, 2016, 48: 2009-2025 CrossRef Google Scholar

[30] Cook AM, Wolf C. Tetrahedron Lett, 2015, 56: 2377-2392 CrossRef PubMed Google Scholar

[31] Evano G, Coste A, Jouvin K. Angew Chem Int Ed, 2010, 49: 2840-2859 CrossRef PubMed Google Scholar

[32] Zhang Y, Hsung RP, Tracey MR, Kurtz KCM, Vera EL. Org Lett, 2004, 6: 1151-1154 CrossRef PubMed Google Scholar

[33] Charpentier J, Früh N, Togni A. Chem Rev, 2015, 115: 650-682 CrossRef PubMed Google Scholar

[34] Eisenberger P, Gischig S, Togni A. Chem Eur J, 2006, 12: 2579-2586 CrossRef PubMed Google Scholar

[35] Jiang Y, Yu H, Fu Y, Liu L. Sci China Chem, 2015, 58: 673-683 CrossRef Google Scholar

[36] Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322-5363 CrossRef PubMed Google Scholar

[37] Luo J, Zhang J. ACS Catal, 2016, 6: 873-877 CrossRef Google Scholar

[38] Lévêque C, Chenneberg L, Corcé V, Ollivier C, Fensterbank L. Chem Commun, 2016, 52: 9877-9880 CrossRef PubMed Google Scholar

[39] Shang TY, Lu LH, Cao Z, Liu Y, He WM, Yu B. Chem Commun, 2019, 55: 5408-5419 CrossRef PubMed Google Scholar

[40] Le Vaillant F, Garreau M, Nicolai S, Gryn’ova G, Corminboeuf C, Waser J. Chem Sci, 2018, 9: 5883-5889 CrossRef PubMed Google Scholar

[41] Jacquet J, Blanchard S, Derat E, Desage-El Murr M, Fensterbank L. Chem Sci, 2016, 7: 2030-2036 CrossRef PubMed Google Scholar

[42] Singh K, Staig SJ, Weaver JD. J Am Chem Soc, 2014, 136: 5275-5278 CrossRef PubMed Google Scholar

[43] Lin QY, Xu XH, Qing FL. J Org Chem, 2014, 79: 10434-10446 CrossRef PubMed Google Scholar

[44] Larraufie MH́̀, Courillon C, Ollivier C, Lacôte E, Malacria M, Fensterbank L. J Am Chem Soc, 2010, 132: 4381-4387 CrossRef PubMed Google Scholar

[45] Bogen S, Gulea M, Fensterbank L, Malacria M. J Org Chem, 1999, 64: 4920-4925 CrossRef PubMed Google Scholar

  • Scheme 1

    Ynamides as radical acceptors: context and objective of the work (color online).

  • Figure 1

    DFT-computed structure of AE and corresponding Kohn-Sham orbitals (color online).

  • Scheme 2

    Synthesis route for the ynamide 3a (color online).

  • Scheme 3

    By-products formed from the use of the Togni II reagent.

  • Scheme 4

    Scope of the process (E/Z ratio precised).

  • Scheme 5

    Energetic profile for the cyclisation of the ynamide: energies given are ΔG in kcal/mol (color online).

  • Table 1   Optimization of the reaction conditions

    Entry

    Catalyst

    CF3 reagent

    Solvent

    Time

    Yield (%), E/Z

    1

    Ru(bpy)3Cl2

    Togni II

    MeCN

    48 h

    36, 97:3

    2

    Ir(ppy)2(dtbpy)·PF6

    Togni II b)

    MeCN

    21 h

    45, 50:50

    3

    Ir(ppy)3

    Togni II

    MeCN

    6 h

    71, 86:14

    4

    4CzIPN b)

    Togni II

    MeCN

    4 h

    50, 92:8

    5

    Ir(ppy)3 b)

    Umemoto

    MeCN

    23 h

    14 c), 100:0

    6

    Ir(ppy)3

    Togni I

    MeCN

    5 h

    64 d), 81:19

    7

    Ir(ppy)3

    Togni II

    Acetone

    4 h

    54, 85:15

    8

    Ir(ppy)3

    Togni II

    DMF

    3 h

    51, 62:38

    9

    Ir(ppy)3

    Togni II

    tBuOH

    24 h

    55, 75:25

    10

    Ir(ppy)3

    Togni II

    AcOEt

    3 h

    62, 92:8

    Reaction conditions: N-benzyl-N-ethynyl-benzamide (3a, 0.2 mmol,1 equiv.), CF3 reagent (1.2 equiv.), catalyst (2.5 mol% unless otherwise specified), solvent (0.1 M, 2 mL), freeze pump, irradiation under blue LEDs for 3–48 h; b) catalyst loading: 5 mol%; c) addition 1.2 equiv. of Li2CO3; d) 2 trials on a 1 mmol scale.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号