logo

SCIENCE CHINA Chemistry, Volume 62 , Issue 11 : 1537-1541(2019) https://doi.org/10.1007/s11426-019-9628-9

Iodine(III) reagent (ABX–N3)-induced intermolecular anti-Markovnikov hydroazidation of unactivated alkenes

More info
  • ReceivedJul 5, 2019
  • AcceptedJul 29, 2019
  • PublishedOct 16, 2019

Abstract

Anti-Markovnikov hydroazidation of unactivated alkenes using ABX–N3 as an initiator has been developed at room temperature, wherein hydrogen azide (HN3) acts as both hydrogen and azidating agent. Notably, the HN3 reagent was generated from azidotrimethylsilane (TMSN3) and acetic acid in situ. The reaction itself displays broad substrate scope, good yields and excellent regioselectivities.


Funded by

the National Basic Research Program of China(973-2015CB856600)

the National Natural Science Foundation of China(21532009,21821002,21790330,21761142010)

the Science and Technology Commission of Shanghai Municipality(17XD1404500,17QA1405200,17JC1401200)

the strategic Priority Research Program(XDB20000000)

the Key Research Program of Frontier Science(QYZDJSSW-SLH055)


Acknowledgment

This work was supported by the National Basic Research Program of China (973-2015CB856600), the National Natural Science Foundation of China (21532009, 21821002, 21790330, 21761142010), the Science and Technology Commission of Shanghai Municipality (17XD1404500, 17QA1405200, 17JC1401200), the strategic Priority Research Program (XDB20000000) and the Key Research Program of Frontier Science (QYZDJSSW-SLH055) of the Chinese Academy of Sciences.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Roesky PW, Müller TE, Espino CG, Fiori KW, Kim M, Du Bois J, Utsunomiya M, Hartwig JF, Brice JL, Harang JE, Timokhin VI, Anastasi NR, Stahl SS. Angew Chem Int Ed, 2003, 42: 2708-2710 CrossRef PubMed Google Scholar

[2] Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M, Huang L, Arndt M, Gooßen K, Heydt H, Gooßen LJ, Bernoud E, Lepori C, Mellah M, Schulz E, Hannedouche J, Villa M, Jacobi von Wangelin A, Pirnot MT, Wang YM, Buchwald SL, Michon C, Abadie MA, Medina F, Agbossou-Niedercorn F. Chem Rev, 2008, 108: 3795-3892 CrossRef PubMed Google Scholar

[3] Beller M, Trauthwein H, Eichberger M, Breindl C, Herwig J, Müller TE, Thiel OR, Takemiya A, Hartwig JF, Nguyen TM, Nicewicz DA, Musacchio AJ, Nguyen LQ, Beard GH, Knowles RR. Chem Eur J, 1999, 5: 1306-1319 CrossRef Google Scholar

[4] Takaya J, Hartwig JF, Rucker RP, Whittaker AM, Dang H, Lalic G, Zhu S, Buchwald SL, Nguyen TM, Manohar N, Nicewicz DA, Ensign SC, Vanable EP, Kortman GD, Weir LJ, Hull KL, Musacchio AJ, Lainhart BC, Zhang X, Naguib SG, Sherwood TC, Knowles RR, Zhu Q, Graff DE, Knowles RR, Lardy SW, Schmidt VA. J Am Chem Soc, 2005, 127: 5756-5757 CrossRef PubMed Google Scholar

[5] Wu K, Liang Y, Jiao N. Molecules, 2016, 21: 352 CrossRef PubMed Google Scholar

[6] Fu N, Sauer GS, Saha A, Loo A, Lin S, Peng H, Yuan Z, Chen P, Liu G, Yang B, Lu Z, Bunescu A, Ha TM, Wang Q, Zhu J, Liu Z, Liu ZQ, Cong F, Wei Y, Tang P, Shen SJ, Zhu CL, Lu DF, Xu H, Zhang L, Liu S, Zhao Z, Su H, Hao J, Wang Y, Li WY, Wu CS, Wang Z, Luo Y, Zhang YX, Jin RX, Yin H, Li Y, Wang XS. Science, 2017, 357: 575-579 CrossRef PubMed ADS Google Scholar

[7] Waser J, Carreira EM. Azides by olefin hydroazidation reactions. In: Bräse S, Banert K, Eds. Organic Azides: Syntheses and Applications. Chichester: John Wiley & Sons, 2010. 95–111. Google Scholar

[8] Waser J, Nambu H, Carreira EM, Waser J, Gaspar B, Nambu H, Carreira EM. J Am Chem Soc, 2005, 127: 8294-8295 CrossRef PubMed Google Scholar

[9] Va P, Campbell EL, Robertson WM, Boger DL, Leggans EK, Barker TJ, Duncan KK, Boger DL. J Am Chem Soc, 2010, 132: 8489-8495 CrossRef PubMed Google Scholar

[10] Lonca GH, Ong DY, Tran TMH, Tejo C, Chiba S, Gagosz F. Angew Chem Int Ed, 2017, 56: 11440-11444 CrossRef PubMed Google Scholar

[11] Kapat A, König A, Montermini F, Renaud P. J Am Chem Soc, 2011, 133: 13890-13893 CrossRef PubMed Google Scholar

[12] Wang JJ, Yu W. Chem Eur J, 2019, 25: 3510-3514 CrossRef PubMed Google Scholar

[13] Wang Y, Li GX, Yang G, He G, Chen G. Chem Sci, 2016, 7: 2679-2683 CrossRef PubMed Google Scholar

[14] Wang Y, Hu X, Morales-Rivera CA, Li GX, Huang X, He G, Liu P, Chen G. J Am Chem Soc, 2018, 140: 9678-9684 CrossRef PubMed Google Scholar

[15] Jimeno C, Renaud P. Organic Azides. Hoboken: Wiley-Blackwell, 2010. 239–267. Google Scholar

[16] Trahanovsky WS, Robbins MD, Magnus P, Lacour J, Evans PA, Roe MB, Hulme C, Matcha K, Narayan R, Antonchick AP, Wei XH, Li YM, Zhou AX, Yang TT, Yang SD, Zhang B, Studer A, Li Z, Zhang C, Zhu L, Liu C, Li C, Yin H, Wang T, Jiao N, Zhu L, Yu H, Xu Z, Jiang X, Lin L, Wang R, Su H, Li W, Xuan Z, Yu W, Sun X, Li X, Song S, Zhu Y, Liang YF, Jiao N, Valiulin RA, Mamidyala S, Finn MG, Zhu R, Buchwald SL, Yuan YA, Lu DF, Chen YR, Xu H. Minisci F, Galli R, Gazz MC. Chim Ital, 1964, 94: 67–90. Google Scholar

[17] Li H, Shen SJ, Zhu CL, Xu H. J Am Chem Soc, 2019, 141: 9415-9421 CrossRef PubMed Google Scholar

[18] It should be noted that HN3 generated in situ is a highly toxic and dangerously explosive reagent. Thus, once reaction completed, a strong base NaOH should be added to quench it before the sequential workup procedure.. Google Scholar

  • Scheme 1

    Azido radical initiated reactions (color online).

  • Scheme 2

    Synthetic applications. Reaction conditions: a) Pd/C (5 wt%), H2 (30 bar), Boc2O (1.0 equiv.), EtOAc, r,t.; b) CuI, THF, r.t.; c) P(OMe)3(1.3 equiv.), toluene, 80 °C; d) PPh3 (1.2 equiv.), toluene, 50 °C, then CS2(10 equiv.), 50 °C, and isolated yield (color online).

  • Table 1   Optimization of the reaction conditions

    Entry

    ABX–N3 (equiv.)

    TMSN3 (mmol)

    H donor

    Solvent

    Yield of 2 (%)

    1

    0.1

    H2O

    CH2Cl2

    15

    2

    0.2

    H2O

    CH2Cl2

    70

    3

    0.2

    H2O

    CHCl3

    48

    4

    0.2

    H2O

    EA

    12

    5

    0.2

    H2O

    Acetone

    7

    6

    0.2

    H2O

    1,4-Dioxane

    17

    7

    0.2

    H2O

    Toluene

    9

    8

    0.2

    H2O

    MeCN

    8

    9

    0.2

    H2O

    THF

    0

    10

    0.2

    H2O

    H2O

    0

    11

    0.2

    0.2

    H2O

    CH2Cl2

    69

    12

    0.02

    0.2

    H2O

    CH2Cl2

    70

    13

    0.02

    0.2

    HOAc

    CH2Cl2

    74

    14 b)

    0.02

    0.2

    HOAc

    CH2Cl2

    83

    15

    0.2

    HOAc

    CH2Cl2

    0

    16

    0.02

    0.2

    CH2Cl2

    0

    Reaction conditions: 1a (0.1 mmol), ABX–N3 (0.2–2 equiv.), TMSN3 (0–2 equiv.), additives (H2O 40 μL or HOAc 0.2 mmol) in solvent (0.4 mL) under an argon atmosphere; 1H NMR yields using CF3-DMA as an internal standard. b) CH2Cl2 (0.1 mL) was used.

  • Table 2   Substrate scope

    Reaction conditions: 1 (0.2 mmol), ABX−N3 (20 mmol%), TMSN3(0.4 mmol), HOAc (0.4 mmol), DCM (0.2 mL), r.t., 4 h. b) Isolated yield.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号