logo

Fluorescence detection of hydroxyl radical generated from oxygen reduction on Fe/N/C catalyst

More info
  • ReceivedAug 19, 2019
  • AcceptedOct 10, 2019
  • PublishedNov 27, 2019

Abstract


Funded by

the National Key Research and Development Program of China(2017YFA0206500)

and the National Natural Science Foundation of China(21603103,21875194,21902125,91645121)


Acknowledgment

This work was supported by the National Key Research and Development Program of China (2017YFA0206500), and the National Natural Science Foundation of China (21603103, 21875194, 21902125, 91645121).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Lefèvre M, Proietti E, Jaouen F, Dodelet JP. Science, 2009, 324: 71-74 CrossRef PubMed ADS Google Scholar

[2] Wu G, More KL, Johnston CM, Zelenay P. Science, 2011, 332: 443-447 CrossRef PubMed ADS Google Scholar

[3] Huang X, Wang Y, Li W, Hou Y. Sci China Chem, 2017, 60: 1494-1507 CrossRef Google Scholar

[4] Liu J, Jin Z, Wang X, Ge J, Liu C, Xing W. Sci China Chem, 2019, 62: 669-683 CrossRef Google Scholar

[5] Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet JP. Nat Commun, 2011, 2: 416 CrossRef PubMed ADS Google Scholar

[6] Choi JY, Yang L, Kishimoto T, Fu X, Ye S, Chen Z, Banham D. Energy Environ Sci, 2017, 10: 296-305 CrossRef Google Scholar

[7] Banham D, Ye S, Pei K, Ozaki J, Kishimoto T, Imashiro Y. J Power Sources, 2015, 285: 334-348 CrossRef ADS Google Scholar

[8] Herranz J, Jaouen F, Lefèvre M, Kramm UI, Proietti E, Dodelet JP, Bogdanoff P, Fiechter S, Abs-Wurmbach I, Bertrand P, Arruda TM, Mukerjee S. J Phys Chem C, 2011, 115: 16087-16097 CrossRef PubMed Google Scholar

[9] Ferrandon M, Wang X, Kropf AJ, Myers DJ, Wu G, Johnston CM, Zelenay P. Electrochim Acta, 2013, 110: 282-291 CrossRef Google Scholar

[10] Wu G, Artyushkova K, Ferrandon M, Kropf AJ, Myers D, Zelenay P. ECS Trans, 2009, 25: 1299–1311. Google Scholar

[11] Goellner V, Armel V, Zitolo A, Fonda E, Jaouen F. J Electrochem Soc, 2015, 162: H403-H414 CrossRef Google Scholar

[12] Choi CH, Lim HK, Chung MW, Chon G, Ranjbar Sahraie N, Altin A, Sougrati MT, Stievano L, Oh HS, Park ES, Luo F, Strasser P, Dražić G, Mayrhofer KJJ, Kim H, Jaouen F. Energy Environ Sci, 2018, 11: 3176-3182 CrossRef Google Scholar

[13] Schulenburg H, Stankov S, Schünemann V, Radnik J, Dorbandt I, Fiechter S, Bogdanoff P, Tributsch H. J Phys Chem B, 2003, 107: 9034-9041 CrossRef Google Scholar

[14] Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet JP, Wu G, Chung HT, Johnston CM, Zelenay P. Energy Environ Sci, 2011, 4: 114-130 CrossRef Google Scholar

[15] Lefèvre M, Dodelet JP. Electrochim Acta, 2003, 48: 2749-2760 CrossRef Google Scholar

[16] Gubler L, Dockheer SM, Koppenol WH. J Electrochem Soc, 2011, 158: B755 CrossRef Google Scholar

[17] Shiku H, Uchida I, Matsue T. Langmuir, 1997, 13: 7239-7244 CrossRef Google Scholar

[18] Yue Q, Zhang K, Chen X, Wang L, Zhao J, Liu J, Jia J. Chem Commun, 2010, 46: 3369-3371 CrossRef PubMed Google Scholar

[19] Dodelet JP. Oxygen reduction in PEM fuel cell conditions: heat-treated non-precious metal-N4 macrocycles and beyond. N4-macrocyclic metal complexes. In: Zagal JH, Bedioui F, Dodelet JP, Eds. N4-Macrocyclic Metal Complexes. New York: Springer, 2006. 83–147. Google Scholar

[20] Wei H, Su X, Liu J, Tian J, Wang Z, Sun K, Rui Z, Yang W, Zou Z. Electrochem Commun, 2018, 88: 19-23 CrossRef Google Scholar

[21] Noël JM, Latus A, Lagrost C, Volanschi E, Hapiot P. J Am Chem Soc, 2012, 134: 2835-2841 CrossRef PubMed Google Scholar

[22] Sengupta K, Chatterjee S, Dey A. ACS Catal, 2016, 6: 6838-6852 CrossRef Google Scholar

[23] Prabhakaran V, Arges CG, Ramani V. Proc Natl Acad Sci USA, 2012, 109: 1029-1034 CrossRef PubMed ADS Google Scholar

[24] Chen X, Tian X, Shin I, Yoon J. Chem Soc Rev, 2011, 40: 4783-4804 CrossRef PubMed Google Scholar

[25] Burgos-Castillo RC, Fontmorin JM, Tang WZ, Dominguez-Benetton X, Sillanpää M. RSC Adv, 2018, 8: 5321-5330 CrossRef Google Scholar

[26] Wang J, Wang K, Wang FB, Xia XH. Nat Commun, 2014, 5: 5285 CrossRef PubMed ADS Google Scholar

[27] Nakabayashi Y, Nosaka Y. Phys Chem Chem Phys, 2015, 17: 30570-30576 CrossRef PubMed ADS Google Scholar

[28] Nosaka Y, Nosaka AY. Chem Rev, 2017, 117: 11302-11336 CrossRef PubMed Google Scholar

[29] Yang XD, Zheng Y, Yang J, Shi W, Zhong JH, Zhang C, Zhang X, Hong YH, Peng XX, Zhou ZY, Sun SG. ACS Catal, 2016, 7: 139-145 CrossRef Google Scholar

[30] Ishibashi K, Fujishima A, Watanabe T, Hashimoto K. Electrochem Commun, 2000, 2: 207-210 CrossRef Google Scholar

[31] Jing Y, Chaplin BP. Environ Sci Technol, 2017, 51: 2355-2365 CrossRef PubMed ADS Google Scholar

[32] Muthukrishnan A, Nabae Y. J Phys Chem C, 2016, 120: 22515-22525 CrossRef Google Scholar

  • Scheme 1

    Schematic illustration of the conversion from non-fluorescent coumarin to fluorescent 7-hydroxyl-coumarin by •OH generated in ORR on Fe/N/C catalyst (color online).

  • Figure 1

    (a) I-t curve of ORR on Fe/N/C at 0.65 V in O2-saturated 0.1 M H2SO4 solution with and without addition of 0.5 mM coumarin. The red arrow denotes the addition of coumarin into the solution. (b) Fluorescence emission spectra of the solution with coumarin collected at different ORR times (0–6 h). The emission at 472 nm indicates the presence of •OH (color online).

  • Figure 2

    Control experiments for the detection of •OH generated from ORR on the Fe/N/C catalyst. The fluorescence emission spectra of five samples were tested: normal ORR at 0.65 V; Ar-saturated solution at 0.65 V; electrolyte in counter electrode compartment; O2-saturated solution without applying potential (i.e., without ORR), and mixing with 35 μM H2O2 (color online).

  • Figure 3

    (a) Fluorescence emission spectra of the solution with coumarin collected from ORR at different potentials. The time for ORR was 6 h. (b) Fluorescence emission spectra of the solution with 3 μM 7-hydroxyl coumarin collected from ORR at different potentials for 2 h (color online).

  • Figure 4

    (a) ORR polarization curves and ring current of Fe/N/C catalyst in O2-saturated 0.1 M H2SO4 solution. The ring current comes from H2O2 oxidation. (b) Comparison of the ring currents from H2O2 oxidation with the fluorescence intensity induced by •OH (color online).