logo

SCIENCE CHINA Chemistry, Volume 62 , Issue 12 : 1675-1685(2019) https://doi.org/10.1007/s11426-019-9640-1

Near-infrared electrochromism of multilayer films of a cyclometalated diruthenium complex prepared by layer-by-layer deposition on metal oxide substrates

More info
  • ReceivedAug 9, 2019
  • AcceptedOct 14, 0219
  • PublishedNov 13, 2019

Abstract

A cyclometalated diruthenium complex 2 bridged by 1,2,4,5-tetra(pyrid-2-yl)benzene with six carboxylic acid groups at two ends was synthesized. Monolayer and multilayer films FTO/TiO2/(2)n(Zr) (n=1, 2) and FTO/SnO2:Sb/(2)n(Zr) (n=1–4) have been prepared via interfacial layer-by-layer coordination assembly of 2 with zirconium(IV) ions. All films show two consecutive redox couples in the potential range between 0 and +1.0 V vs. Ag/AgCl. These films exhibit reversible near-infrared electrochromism upon switching of redox potential. The response time of the films on SnO2:Sb is around a few seconds, while that on TiO2 is around a few tens of seconds. The film deposition cycles were found to have a great impact on the electrochromic performance. Among six films examined, the two-layered film on SnO2:Sb displays the best balanced performance with a contrast ratio of 56% at 1,150 nm and good cyclic stability (9% loss of contrast ratio after 1,000 continuous double-potential-switching cycles), which is superior to that of the previously reported electropolymerized films of a related diruthenium complex with the same bridging ligand. In addition, the X-ray photoelectron spectroscopy, scanning electron microscopy, and electron transfer mechanism of these films have been investigated.


Funded by

the National Natural Science Foundation of China(21872154)

Beijing National Science Foundation(2191003)

and the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB12010400)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21872154), Beijing National Science Foundation (2191003), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12010400).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. Single crystal data of 3 in cif file. The supporting materials are published as subitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F. Chem Rev, 2016, 116: 14828-14867 CrossRef PubMed Google Scholar

[2] Xiao FX, Pagliaro M, Xu YJ, Liu B. Chem Soc Rev, 2016, 45: 3088-3121 CrossRef PubMed Google Scholar

[3] Zhang L, Sun J. Chem Commun, 2009, 299: 3901 CrossRef PubMed Google Scholar

[4] Yang SY, Rubner MF. J Am Chem Soc, 2002, 124: 2100-2101 CrossRef PubMed Google Scholar

[5] Li M, Ishihara S, Akada M, Liao M, Sang L, Hill JP, Krishnan V, Ma Y, Ariga K. J Am Chem Soc, 2011, 133: 7348-7351 CrossRef PubMed Google Scholar

[6] Kang S, Wang L, Zhang J, Du J, Li M, Chen Q. ACS Appl Mater Interfaces, 2017, 9: 32179-32183 CrossRef Google Scholar

[7] de Ruiter G, Lahav M, van der Boom ME. Acc Chem Res, 2014, 47: 3407-3416 CrossRef PubMed Google Scholar

[8] Sakamoto R, Wu KH, Matsuoka R, Maeda H, Nishihara H. Chem Soc Rev, 2015, 44: 7698-7714 CrossRef PubMed Google Scholar

[9] Heinrich T, Traulsen CHH, Holzweber M, Richter S, Kunz V, Kastner SK, Krabbenborg SO, Huskens J, Unger WES, Schalley CA. J Am Chem Soc, 2015, 137: 4382-4390 CrossRef PubMed Google Scholar

[10] Maeda H, Sakamoto R, Nishihara H. Coord Chem Rev, 2017, 346: 139-149 CrossRef Google Scholar

[11] Mondal PC, Singh V, Zharnikov M. Acc Chem Res, 2017, 50: 2128-2138 CrossRef PubMed Google Scholar

[12] Lu Z, Prouty MD, Guo Z, Golub VO, Kumar CSSR, Lvov YM. Langmuir, 2005, 21: 2042-2050 CrossRef PubMed Google Scholar

[13] Du N, Zhang H, Chen B , Ma X , Liu Z , Wu J , Yang D . Adv Mater, 2007, 19: 1641-1645 CrossRef Google Scholar

[14] Balgley R, Shankar S, Lahav M, van der Boom ME. Angew Chem Int Ed, 2015, 54: 12457-12462 CrossRef PubMed Google Scholar

[15] DeLongchamp DM, Kastantin M, Hammond PT. Chem Mater, 2003, 15: 1575-1586 CrossRef Google Scholar

[16] Bucur CB, Sui Z, Schlenoff JB. J Am Chem Soc, 2006, 128: 13690-13691 CrossRef PubMed Google Scholar

[17] Cui M, Ng WS, Wang X, Darmawan P, Lee PS. Adv Funct Mater, 2015, 25: 401-408 CrossRef Google Scholar

[18] Chen BH, Kao SY, Hu CW, Higuchi M, Ho KC, Liao YC. ACS Appl Mater Interfaces, 2015, 7: 25069-25076 CrossRef Google Scholar

[19] Higuchi M. J Mater Chem C, 2014, 2: 9331-9341 CrossRef Google Scholar

[20] Wu X, Zheng J, Xu C. Sci China Chem, 2017, 60: 84-89 CrossRef Google Scholar

[21] Lahav M, van der Boom ME. Adv Mater, 2018, 30: 1706641 CrossRef PubMed Google Scholar

[22] Elool Dov N, Shankar S, Cohen D, Bendikov T, Rechav K, Shimon LJW, Lahav M, van der Boom ME. J Am Chem Soc, 2017, 139: 11471-11481 CrossRef PubMed Google Scholar

[23] Tieke B. Curr Opin Colloid Interface Sci, 2011, 16: 499. Google Scholar

[24] Gong ZL, Yao CJ, Shao JY, Nie HJ, Tang JH, Zhong YW. Sci China Chem, 2017, 60: 583-590 CrossRef Google Scholar

[25] Tang JH, Cai Z, Yan D, Tang K, Shao JY, Zhan C, Wang D, Zhong YW, Wan LJ, Yao J. J Am Chem Soc, 2018, 140: 12337-12340 CrossRef PubMed Google Scholar

[26] Chuang YW, Yen HJ, Wu JH, Liou GS. ACS Appl Mater Interfaces, 2014, 6: 3594-3599 CrossRef PubMed Google Scholar

[27] Hsiao SH, Wang HM, Liao SH. Polym Chem, 2014, 5: 2473 CrossRef Google Scholar

[28] Hsiao SH, Lin SW. J Mater Chem C, 2016, 4: 1271-1280 CrossRef Google Scholar

[29] Ionescu A, Aiello I, La Deda M, Crispini A, Ghedini M, De Santo MP, Godbert N. ACS Appl Mater Interfaces, 2016, 8: 12272-12281 CrossRef Google Scholar

[30] Yao B, Chen F, Jiang H, Zhang J, Wan X. Electrochim Acta, 2015, 166: 73-81 CrossRef Google Scholar

[31] Chen X, Qiao W, Liu B, Ren J, Wang Z. Sci China Chem, 2017, 60: 77-83 CrossRef Google Scholar

[32] Yen HJ, Liou GS. Polym Chem, 2018, 9: 3001-3018 CrossRef Google Scholar

[33] Kahlfuss C, Métay E, Duclos MC, Lemaire M, Milet A, Saint-Aman E, Bucher C. Chem Eur J, 2015, 21: 2090-2106 CrossRef PubMed Google Scholar

[34] Nojo W, Ishigaki Y, Takeda T, Akutagawa T, Suzuki T. Chem Eur J, 2019, 25: 7759-7765 CrossRef PubMed Google Scholar

[35] Yao CJ, Zhong YW, Nie HJ, Abruña HD, Yao J. J Am Chem Soc, 2011, 133: 20720-20723 CrossRef PubMed Google Scholar

[36] Li ZJ, Shao JY, Zhong YW. Inorg Chem, 2017, 56: 8538-8546 CrossRef PubMed Google Scholar

[37] Li ZJ, Shao JY, Wu SH, Zhong YW. Dalton Trans, 2019, 48: 2197-2205 CrossRef PubMed Google Scholar

[38] Argazzi R, Murakami Iha NY, Zabri H, Odobel F, Bignozzi CA. Coord Chem Rev, 2004, 248: 1299-1316 CrossRef Google Scholar

[39] Lee H, Kepley LJ, Hong HG, Akhter S, Mallouk TE. J Phys Chem, 1988, 92: 2597-2601 CrossRef Google Scholar

[40] Hong HG, Sackett DD, Mallouk TE. Chem Mater, 1991, 3: 521-527 CrossRef Google Scholar

[41] Haga M, Kobayashi K, Terada K. Coord Chem Rev, 2007, 251: 2688-2701 CrossRef Google Scholar

[42] Nagashima T, Ozawa H, Suzuki T, Nakabayashi T, Kanaizuka K, Haga MA. Chem Eur J, 2016, 22: 1658-1667 CrossRef PubMed Google Scholar

[43] Kaliginedi V, Ozawa H, Kuzume A, Maharajan S, Pobelov IV, Kwon NH, Mohos M, Broekmann P, Fromm KM, Haga MA, Wandlowski T. Nanoscale, 2015, 7: 17685-17692 CrossRef PubMed ADS Google Scholar

[44] Hanson K, Torelli DA, Vannucci AK, Brennaman MK, Luo H, Alibabaei L, Song W, Ashford DL, Norris MR, Glasson CRK, Concepcion JJ, Meyer TJ. Angew Chem Int Ed, 2012, 51: 12782-12785 CrossRef PubMed Google Scholar

[45] Ogunsolu OO, Wang JC, Hanson K. ACS Appl Mater Interfaces, 2015, 7: 27730-27734 CrossRef Google Scholar

[46] Yao CJ, Zhong YW, Yao J. J Am Chem Soc, 2011, 133: 15697-15706 CrossRef PubMed Google Scholar

[47] Robson KCD, Koivisto BD, Yella A, Sporinova B, Nazeeruddin MK, Baumgartner T, Grätzel M, Berlinguette CP. Inorg Chem, 2011, 50: 5494-5508 CrossRef PubMed Google Scholar

[48] Green ANM, Palomares E, Haque SA, Kroon JM, Durrant JR. J Phys Chem B, 2005, 109: 12525-12533 CrossRef PubMed Google Scholar

[49] Kalyanasundaram K, Grätzel M. Coord Chem Rev, 1998, 177: 347-414 CrossRef Google Scholar

[50] Ogunsolu OO, Murphy IA, Wang JC, Das A, Hanson K. ACS Appl Mater Interfaces, 2016, 8: 28633-28640 CrossRef Google Scholar

[51] Hu K, Robson KCD, Beauvilliers EE, Schott E, Zarate X, Arratia-Perez R, Berlinguette CP, Meyer GJ. J Am Chem Soc, 2014, 136: 1034-1046 CrossRef PubMed Google Scholar

[52] DiMarco BN, Motley TC, Balok RS, Li G, Siegler MA, O’Donnell RM, Hu K, Meyer GJ. J Phys Chem C, 2016, 120: 14226-14235 CrossRef Google Scholar

[53] Wang JC, Hill SP, Dilbeck T, Ogunsolu OO, Banerjee T, Hanson K. Chem Soc Rev, 2018, 47: 104-148 CrossRef PubMed Google Scholar

[54] Harada W, Hirahara M, Togashi T, Ishizaki M, Kurihara M, Haga MA, Kanaizuka K. Langmuir, 2018, 34: 1321-1326 CrossRef PubMed Google Scholar

[55] Kanaizuka K, Sasaki S, Nakabayashi T, Masunaga H, Ogawa H, Hikima T, Takata M, Haga M. Langmuir, 2015, 31: 10327-10330 CrossRef PubMed Google Scholar

  • Scheme 1

    Synthesis of complex 2 (color online).

  • Figure 1

    Schematic representation of thin film fabrication by (a) electropolymerization or (b) LBL assembly (M=Ti or Sn) (color online).

  • Figure 2

    Thermal ellipsoid plot of the single-crystal X-ray structure of 3 at 30% probability. Solvents, H atoms, and counter anions (PF6) are omitted. (a) Side view; (b) viewing from one terminal ligand along the long axis (color online).

  • Figure 3

    XPS spectra of (a) FTO/TiO2/2 and (b) FTO/TiO2/(2)2(Zr). The insets show the enlarged plots of the Ru 3d5 signal (color online).

  • Figure 4

    XPS spectra of (a) FTO/SnO2:Sb/2 and (b) FTO/SnO2:Sb/(2)2(Zr). The insets show the enlarged plots of the Ru 3d5 signal (color online).

  • Figure 5

    Structural analysis of a possible structure of the multilayer films on SnO2 on the basis of the XPS data. Other ligands (not displayed) around Zr atoms could be water or methanol molecules (color online).

  • Figure 6

    Properties of the FTO/TiO2/2 film. (a) CV at different scan rates (50, 100, 150, 200, 250, 300, 350, and 400 mV/s). (b) The linear dependence of the anodic and cathodic peak current (R2=0.985 and 0.996, respectively) of the redox wave at 0.20 V as a function of the square root of scan rate. (c, d) UV-Vis-NIR spectral changes of film upon stepwise (c) single and (d) double oxidation. (e, f) Transmittance changes monitored at 1,150 nm upon electrochromic switching of the film between +0.10 and +0.49 V. The electrolyte is 0.1 M nBu4NClO4/CH3CN and the reference electrode is Ag/AgCl. The pictures showing the color changes of the films at different redox states are provided in panel (c) and (d) (color online).

  • Figure 7

    (a) FTO/SnO2:Sb/(2)n(Zr)n1 films (n=1–4). The inset shows the change of absorbance at 600 nm (A600 nm) as a function of the deposition cycle n. (b, c) SEM images of (b) bare FTO/SnO2:Sb and (c) FTO/SnO2:Sb/(2)3(Zr)2 films (color online).

  • Figure 8

    (a) CV of FTO/SnO2:Sb/2 at different scan rates (50, 100, 150, 200, and 250 mV/s). (b) The linear dependence of the anodic and cathodic peak current (R2=0.997 and 0.957, respectively) of the redox wave at 0.18 V as a function of the square root of scan rate. (c) Absorption spectra of the film at different charge states (+2, +3, and +4). The electrolyte is 0.1 M nBu4NClO4/CH3CN and the reference electrode is Ag/AgCl. The pictures showing the color changes of the films at different redox states are provided in panel (c) (color online).

  • Figure 9

    Transmittance changes monitored at 1,150 nm for FTO/SnO2:Sb/(2)n(Zr)n1 films (n=1–4). (a) Ten double-potential step cycles between +0.10 and +0.38 V; (b) enlarged one cyclic scan (color online).

  • Figure 10

    Transmittance changes monitored at 1,150 nm of the FTO/SnO2:Sb/(2)2(Zr) film during the first and last ten of the 1,000 continuous double-potential scans between +0.10 and +0.38 V (color online).

  • Figure 11

    Potential-induced absorbance change at 1,150 nm as a function of the square root of time in response to a double-step potential switch from −0.30 to +0.50 V vs. Ag/AgCl. (a) Monitored at TiO2/2 films with a saturated surface coverage (Γfull=2.7×10−8 mol/cm2) and lower coverage (0.52Γfull and 0.33Γfull), respectively; (b) monitored at SnO2:Sb/2 films with a saturated surface coverage (Γfull=1.3×10−8 mol/cm2) and lower coverage (0.77Γfull and 0.31Γfull), respectively (color online).

  • Table 1   Parameters for electrochromism of different films

    Film

    Γ (mol/cm2)

    ΔT (%)

    CE (cm2/C)

    tc, tb (s)

    Poly-1 a)

    1.0×10−8

    40

    250

    6.0, 5.0

    TiO2/2

    2.7×10−8

    20

    130

    >60, >60

    TiO2/(2)2(Zr)

    3.5×10−8

    28

    146

    >60, >60

    SnO2:Sb/2

    1.3×10−8

    35

    70

    2.0, 1.5

    SnO2:Sb/(2)2(Zr)

    2.5×10−8

    56

    100

    4.3, 2.8

    SnO2:Sb/(2)3(Zr)2

    3.2×10−8

    59

    120

    6.2, 4.3

    SnO2:Sb/(2)4(Zr)3

    3.4×10−8

    58

    120

    7.4, 4.2

    Data from Ref. [35].

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号