logo

Raising the capacity of lithium vanadium phosphate via anion and cation co-substitution

More info
  • ReceivedAug 29, 2019
  • AcceptedNov 4, 2019
  • PublishedJan 2, 2020

Abstract


Funded by

the Basic Science Center Project of Natural Science Foundation of China(51788104)

the National Natural Science Foundation of China(51803054,51772093)

the “Transformational Technologies for Clean Energy and Demonstration”

Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21070300)

the Natural Science Foundation of Hunan Province(2019JJ50223,2019JJ20010)

and “Double First-Class” School Construction Project and Outstanding Youth Fund of Hunan province(SYL201802008)


Acknowledgment

This work was supported by the Basic Science Center Project of Natural Science Foundation of China (51788104), the National Natural Science Foundation of China (51803054, 51772093), the “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21070300), the Natural Science Foundation of Hunan Province (2019JJ50223), and “Double First-Class” School Construction Project and Outstanding Youth Fund of Hunan province (SYL201802008, 2019JJ20010).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Lu Y, Zhang Q, Chen J. Sci China Chem, 2019, 62: 533-548 CrossRef Google Scholar

[2] Zhao CZ, Duan H, Huang JQ, Zhang J, Zhang Q, Quo YG, Wan LJ. Sci China Chem, 2019, 62: 1286-1299 CrossRef Google Scholar

[3] Turcheniuk K, Bondarev D, Singhal V, Yushin G. Nature, 2018, 559: 467-470 CrossRef PubMed Google Scholar

[4] Jian Z, Hu YS, Ji X, Chen W. Adv Mater, 2017, 29: 1601925 CrossRef PubMed Google Scholar

[5] Liu C, Massé R, Nan X, Cao G. Energy Storage Mater, 2016, 4: 15-58 CrossRef Google Scholar

[6] Zhang X, Ma J, Hu P, Chen B, Lu C, Zhou X, Han P, Chen L, Cui G. J Energy Chem, 2019, 32: 1-7 CrossRef Google Scholar

[7] Zhang J, Yuan T, Wan H, Qian J, Ai X, Yang H, Cao Y. Sci China Chem, 2017, 60: 1546-1553 CrossRef Google Scholar

[8] Padhi AK, Nanjundaswamy KS, Goodenough JB. J Electrochem Soc, 1997, 144: 1188-1194 CrossRef Google Scholar

[9] Gong Z, Yang Y. Energy Environ Sci, 2011, 4: 3223-3242 CrossRef Google Scholar

[10] Masquelier C, Croguennec L. Chem Rev, 2013, 113: 6552-6591 CrossRef PubMed Google Scholar

[11] Liu Y, Yang B, Dong X, Wang Y, Xia Y. Angew Chem Int Ed, 2017, 56: 16606-16610 CrossRef PubMed Google Scholar

[12] Yin SC, Grondey H, Strobel P, Anne M, Nazar LF. J Am Chem Soc, 2003, 125: 10402-10411 CrossRef PubMed Google Scholar

[13] Tan H, Xu L, Geng H, Rui X, Li C, Huang S. Small, 2018, 14: 1800567 CrossRef PubMed Google Scholar

[14] Shin J, Yang J, Sergey C, Song MS, Kang YM. Adv Sci, 2017, 4: 1700128 CrossRef PubMed Google Scholar

[15] Baboo JP, Song J, Kim S, Jo J, Baek S, Mathew V, Pham DT, Alfaruqi MH, Xiu Z, Sun YK, Kim J. Chem Mater, 2017, 29: 6642-6652 CrossRef Google Scholar

[16] Su J, Wu XL, Lee JS, Kim J, Guo YG. J Mater Chem A, 2013, 1: 2508-2514 CrossRef Google Scholar

[17] Xu J, Chou SL, Zhou C, Gu QF, Liu HK, Dou SX. J Power Sources, 2014, 246: 124-131 CrossRef Google Scholar

[18] Pei B, Jiang Z, Zhang W, Yang Z, Manthiram A. J Power Sources, 2013, 239: 475-482 CrossRef Google Scholar

[19] Pan A, Liu J, Zhang JG, Xu W, Cao G, Nie Z, Arey BW, Liang S. Electrochem Commun, 2010, 12: 1674-1677 CrossRef Google Scholar

[20] Rajagopalan R, Zhang L, Dou SX, Liu H. Adv Energy Mater, 2016, 6: 1501760 CrossRef Google Scholar

[21] Ding XK, Zhang LL, Yang XL, Fang H, Zhou YX, Wang JQ, Ma D. ACS Appl Mater Interfaces, 2017, 9: 42788-42796 CrossRef Google Scholar

[22] Zhang X, Kühnel RS, Hu H, Eder D, Balducci A. Nano Energy, 2015, 12: 207-214 CrossRef Google Scholar

[23] Rui X, Yan Q, Skyllas-Kazacos M, Lim TM. J Power Sources, 2014, 258: 19-38 CrossRef Google Scholar

[24] Sun C, Rajasekhara S, Dong Y, Goodenough JB. ACS Appl Mater Interfaces, 2011, 3: 3772-3776 CrossRef PubMed Google Scholar

[25] Han DW, Lim SJ, Kim YI, Kang SH, Lee YC, Kang YM. Chem Mater, 2014, 26: 3644-3650 CrossRef Google Scholar

[26] Sun S, Li R, Mu D, Lin Z, Ji Y, Huo H, Dai C, Ding F. New J Chem, 2018, 42: 13667-13673 CrossRef Google Scholar

[27] Guo JZ, Wang PF, Wu XL, Zhang XH, Yan Q, Chen H, Zhang JP, Guo YG. Adv Mater, 2017, 29: 1701968 CrossRef PubMed Google Scholar

[28] Kuganathan N, Chroneos A. Sci Rep, 2019, 9: 333 CrossRef PubMed Google Scholar

[29] Lee S, Park SS. J Phys Chem C, 2012, 116: 25190-25197 CrossRef Google Scholar

[30] Membreño N, Xiao P, Park KS, Goodenough JB, Henkelman G, Stevenson KJ. J Phys Chem C, 2013, 117: 11994-12002 CrossRef Google Scholar

[31] Sauvage F, Quarez E, Tarascon JM, Baudrin E. Solid State Sci, 2006, 8: 1215-1221 CrossRef Google Scholar

[32] Dai C, Chen Z, Jin H, Hu X. J Power Sources, 2010, 195: 5775-5779 CrossRef Google Scholar

[33] Qi R, Shi JL, Zhang XD, Zeng XX, Yin YX, Xu J, Chen L, Fu WG, Guo YG, Wan LJ. Sci China Chem, 2017, 60: 1230-1235 CrossRef Google Scholar

[34] Liu BT, Shi XM, Lang XY, Gu L, Wen Z, Zhao M, Jiang Q. Nat Commun, 2018, 9: 1375 CrossRef PubMed Google Scholar

[35] Paynter RW, Edgell MJ, Castle JE. J Electron Spectr Related Phenomena, 1986, 40: 1-9 CrossRef Google Scholar

[36] Seyama H, Soma M. J Chem Soc Faraday Trans 1, 1984, 80: 237-248 CrossRef Google Scholar

[37] Guo H, Wu C, Xie J, Zhang S, Cao G, Zhao X. J Mater Chem A, 2014, 2: 10581-10588 CrossRef Google Scholar

[38] Liang JY, Zeng XX, Zhang XD, Wang PF, Ma JY, Yin YX, Wu XW, Guo YG, Wan LJ. J Am Chem Soc, 2018, 140: 6767-6770 CrossRef PubMed Google Scholar

[39] Chen Z, Chen Q, Wang H, Zhang R, Zhou H, Chen L, Whittingham MS. Electrochem Commun, 2014, 46: 67-70 CrossRef Google Scholar

[40] Yu X, Lyu Y, Gu L, Wu H, Bak SM, Zhou Y, Amine K, Ehrlich SN, Li H, Nam KW, Yang XQ. Adv Energy Mater, 2014, 4: 1300950 CrossRef Google Scholar

[41] Tang K, Yu X, Sun J, Li H, Huang X. Electrochim Acta, 2011, 56: 4869-4875 CrossRef Google Scholar

[42] Rui XH, Yesibolati N, Li SR, Yuan CC, Chen CH. Solid State Ion, 2011, 187: 58-63 CrossRef Google Scholar

[43] Cui ZH, Guo XX, Li H. Energy Environ Sci, 2015, 8: 182-187 CrossRef Google Scholar

  • Figure 1

    (a) The XRD patterns of pristine and Mg2+ and Cl co-substituted LVP. (b) FTIR and (c) Raman spectra of LVMgPCl (color online).

  • Figure 2

    (a) SEM image of LVMgPCl. (b) TEM image of LVMgPCl with (c) magnified area analysis. (d) SEM image of LVMgPCl and corresponding element mapping (color online).

  • Figure 3

    (a) XPS spectra of LVP and LVMgPCl. (b) V 2p, (c) Mg 1s, and (d) Cl 2p (color online).

  • Figure 4

    (a) The plot of peak current (Ip) versus v1/2 for different redox reactions. (b) GITT curves plotted with the voltage as a function of time for LVMgPCl at 0.2 C rate in discharging process. (c) CV curves for LVP and LVMgPCl at 0.1 mV s−1. (d) EIS spectra for batteries based on LVP and LVMgPCl at open circuit potential (color online).

  • Figure 5

    (a) Rate capabilities for LVP (hollow) and LVMgPCl (solid). (b) Galvanostatic charge/discharge profiles of LVMgPCl, and (c) long-term cycling performances of LVP (blue) and LVMgPCl (red) at 2 C rate (color online).