A visible-light-photocatalytic water-splitting strategy for sustainable hydrogenation/deuteration of aryl chlorides

More info
  • ReceivedNov 26, 2019
  • AcceptedDec 24, 2019
  • PublishedFeb 17, 2020


Hydrogenation/deuteration of carbon chloride (C–Cl) bonds is of high significance but remains a remarkable challenge in synthetic chemistry, especially using safe and inexpensive hydrogen donors. In this article, a visible-light-photocatalytic water-splitting hydrogenation technology (WSHT) is proposed to in-situ generate active H-species (i.e., Had) for controllable hydrogenation of aryl chlorides instead of using flammable H2. When applying heavy water-splitting systems, we could selectively install deuterium at the C–Cl position of aryl chlorides under mild conditions for the sustainable synthesis of high-valued added deuterated chemicals. Sub-micrometer Pd nanosheets (Pd NSs) decorated crystallined polymeric carbon nitrides (CPCN) is developed as the bifunctional photocatalyst, whereas Pd NSs not only serve as a cocatalyst of CPCN to generate and stabilize H (D)-species but also play a significant role in the sequential activation and hydrogenation/deuteration of C–Cl bonds. This article highlights a photocatalytic-WSHT for controllable hydrogenation/deuteration of low-cost aryl chlorides, providing a promising way for the photosynthesis of high-valued added chemicals instead of the hydrogen evolution.

Funded by

the National Natural Science Foundation of China(21972094,51701127,21401190)

China Postdoctoral Science Foundation(2017M612709)

Guangdong Special Support Program

Pengcheng Scholar program

Shenzhen Peacock Plan(KQJSCX20170727100802505,KQTD2016053112042971)

Educational Commission of Guangdong Province(2016KTSCX126)

Foundation for Distinguished Young Talents in Higher Education of Guangdong(2018KQNCX221)

Shenzhen Innovation Program(JCYJ,20170818142642395)


This work was supported by the National Natural Science Foundation of China (21972094, 51701127, 21401190), China Postdoctoral Science Foundation (2017M612709), Guangdong Special Support Program, Pengcheng Scholar Program, Shenzhen Peacock Plan (KQJSCX20170727100802505, KQTD2016053112042971), Educational Commission of Guangdong Province (2016KTSCX126), Foundation for Distinguished Young Talents in Higher Education of Guangdong (2018KQNCX221), Shenzhen Innovation Program (JCYJ 20170818142642395). We are thankful for the support of TEM characterizations from the Electron Microscopy Center of Shenzhen University and computational source supplied by the National Supercomputing Center in Shenzhen (Shenzhen Cloud Computing Center).

Interest statement

The authors declare that they have no conflict of interest.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Chem Rev, 2017, 117: 5619-5674 CrossRef PubMed Google Scholar

[2] Ghosh I, Ghosh T, Bardagi JI, König B. Science, 2014, 346: 725-728 CrossRef PubMed Google Scholar

[3] Wang D, Astruc D. Chem Rev, 2015, 115: 6621-6686 CrossRef PubMed Google Scholar

[4] Qiu G, Li Y, Wu J. Org Chem Front, 2016, 3: 1011-1027 CrossRef Google Scholar

[5] Reich HJ. J Org Chem, 2012, 77: 5471-5491 CrossRef PubMed Google Scholar

[6] Ong DY, Tejo C, Xu K, Hirao H, Chiba S. Angew Chem Int Ed, 2017, 56: 1840-1844 CrossRef PubMed Google Scholar

[7] Mutsumi T, Iwata H, Maruhashi K, Monguchi Y, Sajiki H. Tetrahedron, 2011, 67: 1158-1165 CrossRef Google Scholar

[8] Douvris C, Nagaraja CM, Chen CH, Foxman BM, Ozerov OV. J Am Chem Soc, 2010, 132: 4946-4953 CrossRef PubMed Google Scholar

[9] Guo B, Li HX, Zha CH, Young DJ, Li HY, Lang JP. ChemSusChem, 2019, 12: 1421-1427 CrossRef PubMed Google Scholar

[10] Li J, Li X, Wang L, Hu Q, Sun H. Dalton Trans, 2014, 43: 6660-6666 CrossRef PubMed Google Scholar

[11] Tak H, Lee H, Kang J, Cho J. Inorg Chem Front, 2016, 3: 157-163 CrossRef Google Scholar

[12] Zhang HC, Liu RT, Zhou XG. Sci China Chem, 2014, 57: 282-288 CrossRef Google Scholar

[13] Mao ZY, Huang SY, Gao LH, Wang AE, Huang PQ. Sci China Chem, 2014, 57: 252-264 CrossRef Google Scholar

[14] Simon MO, Li CJ. Chem Soc Rev, 2012, 41: 1415-1427 CrossRef PubMed Google Scholar

[15] Just-Baringo X, Procter DJ. Acc Chem Res, 2015, 48: 1263-1275 CrossRef PubMed Google Scholar

[16] Sun B, Zhou W, Li H, Ren L, Qiao P, Li W, Fu H. Adv Mater, 2018, 30: 1804282 CrossRef PubMed Google Scholar

[17] Li H, Cao C, Liu J, Shi Y, Si R, Gu L, Song W. Sci China Mater, 2019, 62: 1306-1314 CrossRef Google Scholar

[18] Zhou W, Li W, Wang JQ, Qu Y, Yang Y, Xie Y, Zhang K, Wang L, Fu H, Zhao D. J Am Chem Soc, 2014, 136: 9280-9283 CrossRef PubMed Google Scholar

[19] Cuerva JM, Campaña AG, Justicia J, Rosales A, Oller-López JL, Robles R, Cárdenas DJ, Buñuel E, Oltra JE. Angew Chem, 2006, 118: 5648-5652 CrossRef Google Scholar

[20] Yan K, Wu G. ACS Sustain Chem Eng, 2015, 3: 779-791 CrossRef Google Scholar

[21] Xiao S, Dai W, Liu X, Pan D, Zou H, Li G, Zhang G, Su C, Zhang D, Chen W, Li H. Adv Energy Mater, 2019, 9: 1900775 CrossRef Google Scholar

[22] Zhang G, Ou W, Wang J, Xu Y, Xu D, Sun T, Xiao S, Wang M, Li H, Chen W, Su C. Appl Catal B-Environ, 2019, 245: 114-121 CrossRef Google Scholar

[23] Liu C, Chen Z, Su C, Zhao X, Gao Q, Ning GH, Zhu H, Tang W, Leng K, Fu W, Tian B, Peng X, Li J, Xu QH, Zhou W, Loh KP. Nat Commun, 2018, 9: 80-88 CrossRef PubMed Google Scholar

[24] Qiu C, Xu Y, Fan X, Xu D, Tandiana R, Ling X, Jiang Y, Liu C, Yu L, Chen W, Su C. Adv Sci, 2019, 6: 1801403 CrossRef PubMed Google Scholar

[25] Soulard V, Villa G, Vollmar DP, Renaud P. J Am Chem Soc, 2018, 140: 155-158 CrossRef PubMed Google Scholar

[26] Loh YY, Nagao K, Hoover AJ, Hesk D, Rivera NR, Colletti SL, Davies IW, MacMillan DWC. Science, 2017, 358: 1182-1187 CrossRef PubMed Google Scholar

[27] Wang X, Zhu MH, Schuman DP, Zhong D, Wang WY, Wu LY, Liu W, Stoltz BM, Liu WB. J Am Chem Soc, 2018, 140: 10970-10974 CrossRef PubMed Google Scholar

[28] Yu RP, Hesk D, Rivera N, Pelczer I, Chirik PJ. Nature, 2016, 529: 195-199 CrossRef PubMed Google Scholar

[29] Katsnelson A. Nat Med, 2013, 19: 656 CrossRef PubMed Google Scholar

[30] Mullard A. Nat Rev Drug Discov, 2017, 16: 305 CrossRef PubMed Google Scholar

[31] Xu Y, He X, Zhong H, Singh DJ, Zhang L, Wang R. Appl Catal B-Environ, 2019, 246: 349-355 CrossRef Google Scholar

[32] Li H, Chen G, Yang H, Wang X, Liang J, Liu P, Chen M, Zheng N. Angew Chem Int Ed, 2013, 52: 8368-8372 CrossRef PubMed Google Scholar

[33] Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Nat Nanotech, 2011, 6: 28-32 CrossRef PubMed Google Scholar

[34] Tauster SJ. Acc Chem Res, 1987, 20: 389-394 CrossRef Google Scholar

[35] Li XH, Antonietti M. Chem Soc Rev, 2013, 42: 6593-6604 CrossRef PubMed Google Scholar

[36] Kisch H. Acc Chem Res, 2017, 50: 1002-1010 CrossRef PubMed Google Scholar

[37] Zhou W, Fu H. Inorg Chem Front, 2018, 5: 1240-1254 CrossRef Google Scholar

[38] Zhang GQ, Liu G, Xu Y, Yang J, Li Y, Sun X, Chen W, Su CL. Sci China Mater, 2018, 61: 1033-1039 CrossRef Google Scholar

[39] Ren JT, Yuan K, Wu K, Zhou L, Zhang YW. Inorg Chem Front, 2019, 6: 366-375 CrossRef Google Scholar

  • Figure 1

    (a, b) TEM and HRTEM images of Pd NSs. The inset in (b) is the FFT pattern from the marked yellow square. (c) TEM image of Pd NSs/CPCN-2. (d) The HAADF-STEM image of Pd NSs/CPCN-2. (e–h) The HAADF-STEM images and element mapping patterns of Pd NSs/CPCN-2 (color online).

  • Figure 2

    (a) XRD patterns of Pd NSs, CPCN and Pd NSs/CPCN-2. (b) UV-Vis-NIR diffuse reflectance spectra of CPCN and Pd NSs/CPCN-2 (color online).

  • Figure 3

    Pd 3d (a) and N 1s (b) XPS spectrum of Pd NSs and Pd NSs/CPCN-2 (color online).

  • Figure 4

    (a) Photocatalytic H2 evolution over Pd NSs/CPCN-2 and Pd NSs/CPCN-2 after three cycles of hydrogenated dichlorination process under visible light (λ420 nm). (b) Photocatalytic stability of Pd Ns/CPCN-2 towards hydrogenation of 2-chloro-benzonitrile (color online).

  • Figure 5

    The proposed mechanism of the photocatalytic hydrogenation/deuteration reaction (color online).

  • Table 1   Dechlorination of aryl/heteroaryl chlorides

    Chloride substrate (0.2 mmol), TEOA/H2O/ethanol (0.9 mL/8.1 mL/1.0 mL), Pd NSs/CPCN-2 (40 mg), irradiation 24 h. Yields were calculated from GC-MS measurements using a standard curve. b) Methanol/H2O (5.0 mL/5.0 mL). c) Irradiation 48 h.

  • Table 2   Deuteration of aryl/heteroaryl chlorides

    Chloride substrate (0.2 mmol), TEOA/D2O/CH3CH2OD (0.9 mL/8.1 mL/1.0 mL), Pd NSs/CPCN-2 (40 mg), irradiation 24 h. b) CD3OD/D2O (5.0 mL/5.0 mL). Yields were calculated from GC-MS measurements using a standard curve.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号