SCIENCE CHINA Chemistry, Volume 63 , Issue 10 : 1461-1468(2020) https://doi.org/10.1007/s11426-019-9681-8

Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency

More info
  • ReceivedDec 19, 2019
  • AcceptedJan 8, 2020
  • PublishedFeb 12, 2020


Optimizing the components and morphology within the photoactive layer of organic solar cells (OSCs) can significantly enhance their power conversion efficiency (PCE). A new A-D-A type non-fullerene acceptor IDMIC-4F is designed and synthesized in this work, and is employed as the third component to prepare high performance ternary solar cells. IDMIC-4F can form fibrils after solution casting, and the presence of this fibrillar structure in the PBDB-T-2F:BTP-4F host confines the growth of donors and acceptors into fine domains, as well as acting as transport channels to enhance electron mobility. Single junction ternary devices incorporating 10 wt% IDMIC-4F exhibit enhanced light absorption and balanced carrier mobility, and achieve a maximum PCE of 16.6% compared to 15.7% for the binary device, which is a remarkable efficiency for OSCs reported in literature. This non-fullerene acceptor fibril network strategy is a promising method to improve the photovoltaic performance of ternary OSCs.

Funded by

the Natural Science Foundation of Hubei Province of China(2018CFA055)

the National Natural Science Foundation of China(21774097)

the 111 project(B18038)




This work was supported by the Natural Science Foundation of Hubei Province of China (2018CFA055), the National Natural Science Foundation of China (21774097) and the 111 project (B18038). All authors thank the beamline BL16B1 at Shanghai Synchrotron Radiation Facility (China) for providing the beam time and help during GISAXS experiment. We also thank the Diamond Light Source (UK) beamline I07 where GIWAXS measurements were performed (via beamtime allocation SI22651-1). We also thank the U.K. EPSRC for funding studentships for R.C.K. (DTG allocation), M.E.O’K. (EP/L016281/1: CDT in Polymers, Soft Matter and Colloids) and J.A.S. (EP/L01551X/1: CDT in New and Sustainable PV).

Interest statement

The authors declare that they have no conflict of interest.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153-161 CrossRef Google Scholar

[2] Cheng P, Wang R, Zhu J, Huang W, Chang SY, Meng L, Sun P, Cheng HW, Qin M, Zhu C, Zhan X, Yang Y. Adv Mater, 2018, 30: 1705243 CrossRef PubMed Google Scholar

[3] Heeger AJ. Adv Mater, 2014, 26: 10-28 CrossRef PubMed Google Scholar

[4] Fu H, Wang Z, Sun Y. Angew Chem Int Ed, 2019, 58: 4442-4453 CrossRef PubMed Google Scholar

[5] Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119-128 CrossRef PubMed Google Scholar

[6] Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170-1174 CrossRef PubMed Google Scholar

[7] Li W, Chen M, Cai J, Spooner ELK, Zhang H, Gurney RS, Liu D, Xiao Z, Lidzey DG, Ding L, Wang T. Joule, 2019, 3: 819-833 CrossRef Google Scholar

[8] Yan Y, Li W, Cai J, Chen M, Mao Y, Chen X, Gurney RS, Liu D, Huang F, Wang T. Mater Chem Front, 2018, 2: 1859-1865 CrossRef Google Scholar

[9] Bai Y, Zhao C, Chen X, Zhang S, Zhang S, Hayat T, Alsaedi A, Tan Z, Hou J, Li Y. J Mater Chem A, 2019, 7: 15887-15894 CrossRef Google Scholar

[10] Wang Y, Lan W, Li N, Lan Z, Li Z, Jia J, Zhu F. Adv Energy Mater, 2019, 9: 1900157 CrossRef Google Scholar

[11] Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W, Wang Y, Peng J, Zhang H, Liang Z, Yip HL, Peng X, Cao Y, Chen Y. Nat Photon, 2017, 11: 85-90 CrossRef Google Scholar

[12] Yan Y, Li W, Cai JL, Chen MX, Mao YC, Chen XL, Gurney RS, Liu D, Huang F, Wang T. Mater Chem Front, 2018, 2: 1859-1865 Google Scholar

[13] Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515 CrossRef PubMed Google Scholar

[14] Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746-752 CrossRef Google Scholar

[15] Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872 CrossRef PubMed Google Scholar

[16] Yan T, Song W, Huang J, Peng R, Huang L, Ge Z. Adv Mater, 2019, 31: 1902210 CrossRef PubMed Google Scholar

[17] Lin Y, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X, Yarali E, Seitkhan A, Bakr OM, El-Labban A, Schwingenschlögl U, Tung V, McCulloch I, Laquai F, Anthopoulos TD. Adv Mater, 2019, 31: 1902965 CrossRef PubMed Google Scholar

[18] Li K, Wu Y, Tang Y, Pan M, Ma W, Fu H, Zhan C, Yao J. Adv Energy Mater, 2019, 9: 1901728 CrossRef Google Scholar

[19] Li X, Pan F, Sun C, Zhang M, Wang Z, Du J, Wang J, Xiao M, Xue L, Zhang ZG, Zhang C, Liu F, Li Y. Nat Commun, 2019, 10: 519 CrossRef PubMed Google Scholar

[20] Li Z, Jiang K, Yang G, Lai JYL, Ma T, Zhao J, Ma W, Yan H. Nat Commun, 2016, 7: 13094 CrossRef PubMed Google Scholar

[21] Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2019, https://doi.org/10.1007/s11426-019-9599-1 CrossRef Google Scholar

[22] Xie Y, Huo L, Fan B, Fu H, Cai Y, Zhang L, Li Z, Wang Y, Ma W, Chen Y, Sun Y. Adv Funct Mater, 2018, 28: 1800627 CrossRef Google Scholar

[23] Ye L, Xie Y, Weng K, Ryu HS, Li C, Cai Y, Fu H, Wei D, Woo HY, Tan S, Sun Y. Nano Energy, 2019, 58: 220-226 CrossRef Google Scholar

[24] An Q, Ma X, Gao J, Zhang F. Sci Bull, 2019, 64: 504-506 CrossRef Google Scholar

[25] Chang Y, Lau TK, Pan MA, Lu X, Yan H, Zhan C. Mater Horiz, 2019, 6: 2094-2102 CrossRef Google Scholar

[26] Zhou Z, Xu S, Song J, Jin Y, Yue Q, Qian Y, Liu F, Zhang F, Zhu X. Nat Energy, 2018, 3: 952-959 CrossRef Google Scholar

[27] Li H, Lu K, Wei Z. Adv Energy Mater, 2017, 7: 1602540 CrossRef Google Scholar

[28] Bi P, Hao X. Sol RRL, 2019, 3: 1800263 CrossRef Google Scholar

[29] Dayneko SV, Hendsbee AD, Cann JR, Cabanetos C, Welch GC. New J Chem, 2019, 43: 10442-10448 CrossRef Google Scholar

[30] Gasparini N, Lucera L, Salvador M, Prosa M, Spyropoulos GD, Kubis P, Egelhaaf HJ, Brabec CJ, Ameri T. Energy Environ Sci, 2017, 10: 885-892 CrossRef Google Scholar

[31] Ma X, Mi Y, Zhang F, An Q, Zhang M, Hu Z, Liu X, Zhang J, Tang W. Adv Energy Mater, 2018, 8: 1702854 CrossRef Google Scholar

[32] Su D, Pan MA, Liu Z, Lau TK, Li X, Shen F, Huo S, Lu X, Xu A, Yan H, Zhan C. Chem Mater, 2019, 31: 8908-8917 CrossRef Google Scholar

[33] Chen Y, Ye P, Jia X, Gu W, Xu X, Wu X, Wu J, Liu F, Zhu ZG, Huang H. J Mater Chem A, 2017, 5: 19697-19702 CrossRef Google Scholar

[34] Chen Y, Ye P, Zhu ZG, Wang X, Yang L, Xu X, Wu X, Dong T, Zhang H, Hou J, Liu F, Huang H. Adv Mater, 2017, 29: 1603154 CrossRef PubMed Google Scholar

[35] Gao J, Wang J, An Q, Ma X, Hu Z, Xu C, Zhang X, Zhang F. Sci China Chem, 2020, 63: 83–91. Google Scholar

[36] Gasparini N, Jiao X, Heumueller T, Baran D, Matt GJ, Fladischer S, Spiecker E, Ade H, Brabec CJ, Ameri T. Nat Energy, 2016, 1: 16118 CrossRef Google Scholar

[37] Liu S, You P, Li J, Li J, Lee CS, Ong BS, Surya C, Yan F. Energy Environ Sci, 2015, 8: 1463-1470 CrossRef Google Scholar

[38] Zhang M, Gao W, Zhang F, Mi Y, Wang W, An Q, Wang J, Ma X, Miao J, Hu Z, Liu X, Zhang J, Yang C. Energy Environ Sci, 2018, 11: 841-849 CrossRef Google Scholar

[39] Liu T, Luo Z, Chen Y, Yang T, Xiao Y, Zhang G, Ma R, Lu X, Zhan C, Zhang M, Yang C, Li Y, Yao J, Yan H. Energy Environ Sci, 2019, 12: 2529-2536 CrossRef Google Scholar

[40] Zhang M, Ming R, Gao W, An Q, Ma X, Hu Z, Yang C, Zhang F. Nano Energy, 2019, 59: 58-65 CrossRef Google Scholar

[41] Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562-1564 CrossRef Google Scholar

[42] Kan B, Yi YQQ, Wan X, Feng H, Ke X, Wang Y, Li C, Chen Y. Adv Energy Mater, 2018, 8: 1800424 CrossRef Google Scholar

[43] Kumari T, Lee SM, Kang SH, Chen S, Yang C. Energy Environ Sci, 2017, 10: 258-265 CrossRef Google Scholar

[44] Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W. Adv Mater, 2018, 30: 1707150 CrossRef PubMed Google Scholar

[45] Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131-142 CrossRef Google Scholar

[46] Cheng P, Yan C, Wu Y, Wang J, Qin M, An Q, Cao J, Huo L, Zhang F, Ding L, Sun Y, Ma W, Zhan X. Adv Mater, 2016, 28: 8021-8028 CrossRef PubMed Google Scholar

[47] Xie Y, Yang F, Li Y, Uddin MA, Bi P, Fan B, Cai Y, Hao X, Woo HY, Li W, Liu F, Sun Y. Adv Mater, 2018, 30: 1803045 CrossRef PubMed Google Scholar

[48] Yu R, Yao H, Hou J. Adv Energy Mater, 2018, 8: 1702814 CrossRef Google Scholar

[49] Huang H, Yang L, Sharma B. J Mater Chem A, 2017, 5: 11501-11517 CrossRef Google Scholar

[50] Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140-1151 CrossRef Google Scholar

[51] Zhang Y, Yao H, Zhang S, Qin Y, Zhang J, Yang L, Li W, Wei Z, Gao F, Hou J. Sci China Chem, 2018, 61: 1328-1337 CrossRef Google Scholar

[52] Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868 CrossRef PubMed Google Scholar

[53] Xia T, Cai Y, Fu H, Sun Y. Sci China Chem, 2019, 62: 662-668 CrossRef Google Scholar

[54] Street RA, Davies D, Khlyabich PP, Burkhart B, Thompson BC. J Am Chem Soc, 2013, 135: 986-989 CrossRef PubMed Google Scholar

[55] Khlyabich PP, Burkhart B, Thompson BC. J Am Chem Soc, 2011, 133: 14534-14537 CrossRef PubMed Google Scholar

[56] Khlyabich PP, Rudenko AE, Thompson BC, Loo YL. Adv Funct Mater, 2015, 25: 5557-5563 CrossRef Google Scholar

[57] Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531-537 CrossRef Google Scholar

[58] Ye L, Xiong Y, Zhang Q, Li S, Wang C, Jiang Z, Hou J, You W, Ade H. Adv Mater, 2018, 30: 1705485 CrossRef PubMed Google Scholar

[59] Ma W, Yang C, Gong X, Lee K, Heeger AJ. Adv Funct Mater, 2005, 15: 1617-1622 CrossRef Google Scholar

[60] Xiao Y, Lu X. Mater Today Nano, 2019, 5: 100030 CrossRef Google Scholar

[61] Liu T, Huo L, Sun X, Fan B, Cai Y, Kim T, Kim JY, Choi H, Sun Y. Adv Energy Mater, 2016, 6: 1502109 CrossRef Google Scholar

[62] Lu L, Luo Z, Xu T, Yu L. Nano Lett, 2013, 13: 59-64 CrossRef PubMed Google Scholar

  • Figure 1

    (a) The chemical structures and (b) energy levels of PBDB-T-2F, BTP-4F and IDMIC-4F. (c) The absorption spectra of PBDB-T-2F, BTP-4F and IDMIC-4F pure films. (d) AFM image, (e) 2D GIWAXS pattern for a pure IDMIC-4F film (color online).

  • Figure 2

    (a) The absorption spectra of PBDB-T-2F:BTP-4F blends with different contents of IDMIC-4F. (b) J-V curves and (c) EQE of ternary OSCs with different contents of IDMIC-4F (color online).

  • Figure 3

    GIWAXS 2D patterns of (a) PBDB-T-2F:BTP-4F film, and ternary blend films with (b) 10 wt%, (c) 20 wt% IDMIC-4F, (d) neat BTP-4F film and (e, f) intensity profiles along the out-of-plane and in-plane directions for the neat BTP-4F film and all blend films (color online).

  • Figure 4

    TEM images of (a) PBDB-T-2F:BTP-4F blend, and its related ternary blend with (b) 10 wt% IDMIC-4F. 2D GISAXS patterns of (c) PBDB-T-2F:BTP-4F blend film, and (d) with the incorporation of 10 wt% IDMIC-4F. (e) 1D GISAXS profiles along qxy axis for PBDB-T-2F:BTP-4F blends with different IDMIC-4F contents. (f) Schematic illustration of the confinement effect of IDMIC-4F fibrils, which reduce phase separated domain sizes and act as charge transport channels (color online).

  • Figure 5

    (a) Photocurrent density versus effective voltage and (b) VOC versus light intensity for three blend compositions. Root square plots of (c) electron current densities versus bias voltage Vb1 for ITO/ZnO/Active layer/Ca/Ag electron-only devices and (d) hole current densities versus bias voltage for ITO/PEDOT:PSS/Active layer/MoO3/Ag hole-only devices (color online).

  • Table 1   Photovoltaic parameters of ternary OSCs with different amount of IDMIC-4F. The average values and standard deviations were obtained from statistical analysis of over 20 individual devices

    Component in active layer

    Blending ratio

    FF (%)

    JSC(mA cm−2)

    Calculated JSC (mA cm−2)

    VOC (V)

    PCEavg (%)

    PCEmax (%)









    PBDB-T-2F:BTP-4F with 5% IDMIC-4F








    PBDB-T-2F:BTP-4F with 10% IDMIC-4F








    PBDB-T-2F:BTP-4F with 15% IDMIC-4F








    PBDB-T-2F:BTP-4F with 20% IDMIC-4F
















  • Table 2   Fitting parameters of 1D GISAXS profiles of the PBDB-T-2F:BTP-4F binary blend, and ternary blends with various amount of IDMIC-4F


    ξ (nm)

    η (nm)


    2Rg (nm)

    PBDB-T-2F:BTP-4F (1:1.2)





    PBDB-T-2F:BTP-4F:IDMIC-4F (1:1.14:0.06)





    PBDB-T-2F:BTP-4F:IDMIC-4F (1:1.08:0.12)





    PBDB-T-2F:BTP-4F:IDMIC-4F (1:1.02:0.18)





    PBDB-T-2F:BTP-4F:IDMIC-4F (1:0.96:0.24)





  • Table 3   Jsat, P(E, T), electron and hole mobilities of PBDB-T-2F:BTP-4F blend films with different contents of IDMIC-4F


    Jsat(mA cm−2)

    P(E, T) (%)

    Hole mobility (μh) (cm2 V−1 s−1)

    Electron mobility (μe) (cm2 V−1 s−1)


    PBDB-T-2F:BTP-4F (1:1.2)






    PBDB-T-2F:BTP-4F:IDMIC-4F (1:1.14:0.06)






    PBDB-T-2F:BTP-4F:IDMIC-4F (1:1.08:0.12)






    PBDB-T-2F:BTP-4F:IDMIC-4F (1:1.02:0.18)






    PBDB-T-2F:BTP-4F:IDMIC-4F (1:0.96:0.24)






Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号