logo

A review of enantioselective dual transition metal/photoredox catalysis

More info
  • ReceivedDec 31, 2019
  • AcceptedFeb 17, 2020
  • PublishedApr 1, 2020

Abstract

Transition metal catalysis is one of the most important tools to construct carbon-carbon and carbon-heteroatom bonds in modern organic synthesis. Visible-light photoredox catalysis has recently drawn considerable attention of the scientific community owing to its unique activation modes and significance for the green synthesis. The merger of photoredox catalysis with transition metal catalysts, termed metallaphotoredox catalysis, has become a popular strategy for expanding the synthetic utility of visible-light photocatalysis. This strategy has led to the discovery of novel asymmetric transformations, which are unfeasible or not easily accessible by a single catalytic system. This contemporary area of organic chemistry holds promise for the development of economical and environmentally friendly methods for the asymmetric synthesis of chiral compounds. In this review, the advances in the enantioselective metallaphotoredox catalysis (EMPC) are summarized.


Funded by

the National Natural Science Foundation of China(21971110,21732003)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21971110, 21732003).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Ault A. J Chem Educ, 2002, 79: 572-577 CrossRef Google Scholar

[2] Casey CP. J Chem Educ, 2006, 83: 192-195 CrossRef Google Scholar

[3] Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V. Angew Chem Int Ed, 2012, 51: 5062-5085 CrossRef PubMed Google Scholar

[4] Narayanam JMR, Stephenson CRJ. Chem Soc Rev, 2011, 40: 102-113 CrossRef PubMed Google Scholar

[5] Xuan J, Xiao WJ. Angew Chem Int Ed, 2012, 51: 6828-6838 CrossRef PubMed Google Scholar

[6] Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322-5363 CrossRef PubMed Google Scholar

[7] Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24-57 CrossRef Google Scholar

[8] Schultz DM, Yoon TP. Science, 2014, 343: 1239176 CrossRef PubMed Google Scholar

[9] Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075-10166 CrossRef PubMed Google Scholar

[10] Ravelli D, Protti S, Fagnoni M. Chem Rev, 2016, 116: 9850-9913 CrossRef PubMed Google Scholar

[11] Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew Chem Int Ed, 2015, 54: 3872-3890 CrossRef PubMed Google Scholar

[12] Wang C, Lu Z. Org Chem Front, 2015, 2: 179-190 CrossRef Google Scholar

[13] Jiang C, Chen W, Zheng WH, Lu H. Org Biomol Chem, 2019, 17: 8673-8689 CrossRef PubMed Google Scholar

[14] Busch J, Knoll DM, Zippel C, Bräse S, Bizzarri C. Dalton Trans, 2019, 48: 15338-15357 CrossRef PubMed Google Scholar

[15] Skubi KL, Blum TR, Yoon TP. Chem Rev, 2016, 116: 10035-10074 CrossRef PubMed Google Scholar

[16] Silvi M, Melchiorre P. Nature, 2018, 554: 41-49 CrossRef PubMed Google Scholar

[17] Meggers E. Chem Commun, 2015, 51: 3290-3301 CrossRef PubMed Google Scholar

[18] Ma J, Zhang X, Huang X, Luo S, Meggers E. Nat Protoc, 2018, 13: 605-632 CrossRef PubMed Google Scholar

[19] Litman ZC, Wang Y, Zhao H, Hartwig JF. Nature, 2018, 560: 355-359 CrossRef PubMed Google Scholar

[20] Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC. Nat Rev Chem, 2017, 1: 0052 CrossRef Google Scholar

[21] Tellis JC, Primer DN, Molander GA. Science, 2014, 345: 433-436 CrossRef PubMed Google Scholar

[22] Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DWC. Science, 2014, 345: 437-440 CrossRef PubMed Google Scholar

[23] Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc Chem Res, 2016, 49: 1429-1439 CrossRef PubMed Google Scholar

[24] Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J Am Chem Soc, 2015, 137: 4896-4899 CrossRef PubMed Google Scholar

[25] Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DWC. J Am Chem Soc, 2016, 138: 1832-1835 CrossRef PubMed Google Scholar

[26] Gandolfo E, Tang X, Raha Roy S, Melchiorre P. Angew Chem Int Ed, 2019, 58: 16854-16858 CrossRef PubMed Google Scholar

[27] Heitz DR, Tellis JC, Molander GA. J Am Chem Soc, 2016, 138: 12715-12718 CrossRef PubMed Google Scholar

[28] Shields BJ, Doyle AG. J Am Chem Soc, 2016, 138: 12719-12722 CrossRef PubMed Google Scholar

[29] Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DWC. Science, 2016, 352: 1304-1308 CrossRef PubMed Google Scholar

[30] Shen Y, Gu Y, Martin R. J Am Chem Soc, 2018, 140: 12200-12209 CrossRef PubMed Google Scholar

[31] Cheng X, Lu H, Lu Z. Nat Commun, 2019, 10: 3549 CrossRef PubMed Google Scholar

[32] Fan P, Lan Y, Zhang C, Wang C. J Am Chem Soc, 2020, 142: 2180-2186 CrossRef Google Scholar

[33] Guan H, Zhang Q, Walsh PJ, Mao J. Angew Chem Int Ed, 2020, 59: 5172–5177 CrossRef PubMed Google Scholar

[34] Stache EE, Rovis T, Doyle AG. Angew Chem Int Ed, 2017, 56: 3679-3683 CrossRef PubMed Google Scholar

[35] Zhou QQ, Lu FD, Liu D, Lu LQ, Xiao WJ. Org Chem Front, 2018, 5: 3098-3102 CrossRef Google Scholar

[36] Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett, 1965, 6: 4387-4388 CrossRef Google Scholar

[37] Trost BM, Dietsch TJ. J Am Chem Soc, 1973, 95: 8200-8201 CrossRef Google Scholar

[38] Trost BM, Strege PE. J Am Chem Soc, 1977, 99: 1649-1651 CrossRef Google Scholar

[39] Trost BM, Thaisrivongs DA, Hartwig J. J Am Chem Soc, 2011, 133: 12439-12441 CrossRef PubMed Google Scholar

[40] Ardolino MJ, Morken JP. J Am Chem Soc, 2014, 136: 7092-7100 CrossRef PubMed Google Scholar

[41] Misale A, Niyomchon S, Luparia M, Maulide N. Angew Chem Int Ed, 2014, 53: 7068-7073 CrossRef PubMed Google Scholar

[42] Mao J, Zhang J, Jiang H, Bellomo A, Zhang M, Gao Z, Dreher SD, Walsh PJ. Angew Chem Int Ed, 2016, 55: 2526-2530 CrossRef Google Scholar

[43] Murakami R, Sano K, Iwai T, Taniguchi T, Monde K, Sawamura M. Angew Chem Int Ed, 2018, 57: 9465-9469 CrossRef PubMed Google Scholar

[44] Lang SB, O’Nele KM, Tunge JA. J Am Chem Soc, 2014, 136: 13606-13609 CrossRef PubMed Google Scholar

[45] Lang SB, O’Nele KM, Douglas JT, Tunge JA. Chem Eur J, 2015, 21: 18589-18593 CrossRef Google Scholar

[46] Zhang HH, Zhao JJ, Yu S. J Am Chem Soc, 2018, 140: 16914-16919 CrossRef PubMed Google Scholar

[47] Hossain A, Bhattacharyya A, Reiser O. Science, 2019, 364: eaav9713 CrossRef Google Scholar

[48] Wang F, Chen P, Liu G. Acc Chem Res, 2018, 51: 2036-2046 CrossRef PubMed Google Scholar

[49] Nicholls TP, Bissember AC. Tetrahedron Lett, 2019, 60: 150883 CrossRef Google Scholar

[50] Perepichka I, Kundu S, Hearne Z, Li CJ. Org Biomol Chem, 2015, 13: 447-451 CrossRef PubMed Google Scholar

[51] Querard P, Perepichka I, Zysman-Colman E, Li CJ. Beilstein J Org Chem, 2016, 12: 2636-2643 CrossRef PubMed Google Scholar

[52] Wang D, Zhu N, Chen P, Lin Z, Liu G. J Am Chem Soc, 2017, 139: 15632-15635 CrossRef PubMed Google Scholar

[53] Sha W, Deng L, Ni S, Mei H, Han J, Pan Y. ACS Catal, 2018, 8: 7489-7494 CrossRef Google Scholar

[54] Lu FD, Liu D, Zhu L, Lu LQ, Yang Q, Zhou QQ, Wei Y, Lan Y, Xiao WJ. J Am Chem Soc, 2019, 141: 6167-6172 CrossRef PubMed Google Scholar

[55] Bao X, Wang Q, Zhu J. Angew Chem Int Ed, 2019, 58: 2139-2143 CrossRef PubMed Google Scholar

[56] Cheng Z, Chen P, Liu G. Acta Chim Sin, 2019, 77: 856-860 CrossRef Google Scholar

[57] Chen J, Wang PZ, Lu B, Liang D, Yu XY, Xiao WJ, Chen JR. Org Lett, 2019, 21: 9763-9768 CrossRef PubMed Google Scholar

[58] Wang T, Wang YN, Wang R, Zhang BC, Yang C, Li YL, Wang XS. Nat Commun, 2019, 10: 5373 CrossRef PubMed Google Scholar

[59] Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science, 2016, 351: 681-684 CrossRef PubMed Google Scholar

[60] Guo Q, Wang M, Peng Q, Huo Y, Liu Q, Wang R, Xu Z. ACS Catal, 2019, 9: 4470-4476 CrossRef Google Scholar

[61] Okude Y, Hirano S, Hiyama T, Nozaki H. J Am Chem Soc, 1977, 99: 3179-3181 CrossRef Google Scholar

[62] Namba K, Wang J, Cui S, Kishi Y. Org Lett, 2005, 7: 5421-5424 CrossRef PubMed Google Scholar

[63] Schwarz JL, Schäfers F, Tlahuext-Aca A, Lückemeier L, Glorius F. J Am Chem Soc, 2018, 140: 12705-12709 CrossRef PubMed Google Scholar

[64] Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Chem Sci, 2019, 10: 3459-3465 CrossRef PubMed Google Scholar

[65] Parasram M, Gevorgyan V. Chem Soc Rev, 2017, 46: 6227-6240 CrossRef PubMed Google Scholar

[66] Kancherla R, Muralirajan K, Sagadevan A, Rueping M. Chem, 2019, 1: 510–523. Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号