logo

Amino-metalloporphyrin polymers derived Fe single atom catalysts for highly efficient oxygen reduction reaction

More info
  • ReceivedNov 6, 2019
  • AcceptedFeb 18, 2020
  • PublishedMar 27, 2020

Abstract


Funded by

the National Natural Science Foundation of China(21938001,21606260,21576302,21376278,21425627,21701199)

the National Natural Science Foundation of China-SINOPEC Joint Fund(U1663220)

the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01C102)

the Natural Science Foundation of Guang-dong Province(2015A030313104)

the Fundamental Research Funds for the Central Universities of Sun Yat-sen University(15lgjc33,19lgpy129)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21938001, 21606260, 21576302, 21376278, 21425627, 21701199), the National Natural Science Foundation of China-SINOPEC Joint Fund (U1663220), the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01C102), the Natural Science Foundation of Guang-dong Province (2015A030313104), the Fundamental Research Funds for the Central Universities of Sun Yat-sen University (15lgjc33, 19lgpy129).


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

Supporting Information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Chem Rev, 2019, 119: 1806-1854 CrossRef PubMed Google Scholar

[2] Sultan S, Tiwari JN, Singh AN, Zhumagali S, Ha M, Myung CW, Thangavel P, Kim KS. Adv Energy Mater, 2019, 9: 1900624 CrossRef Google Scholar

[3] Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland AI, Duan X, Huang Y. Nat Catal, 2018, 1: 63-72 CrossRef Google Scholar

[4] Zhang L, Si R, Liu H, Chen N, Wang Q, Adair K, Wang Z, Chen J, Song Z, Li J, Banis MN, Li R, Sham TK, Gu M, Liu LM, Botton GA, Sun X. Nat Commun, 2019, 10: 4936 CrossRef PubMed Google Scholar

[5] Zhang L, Doyle-Davis K, Sun X. Energy Environ Sci, 2019, 12: 492-517 CrossRef Google Scholar

[6] Yan H, Lin Y, Wu H, Zhang W, Sun Z, Cheng H, Liu W, Wang C, Li J, Huang X, Yao T, Yang J, Wei S, Lu J. Nat Commun, 2017, 8: 1070 CrossRef PubMed Google Scholar

[7] Wan X, Chen W, Yang J, Liu M, Liu X, Shui J. ChemElectroChem, 2019, 6: 304-315 CrossRef Google Scholar

[8] Wang XX, Prabhakaran V, He Y, Shao Y, Wu G. Adv Mater, 2019, : 1805126 CrossRef PubMed Google Scholar

[9] Shi Q, Fu S, Zhu C, Song J, Du D, Lin Y. Mater Horiz, 2019, 6: 684-702 CrossRef Google Scholar

[10] Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y. Joule, 2018, 2: 1242-1264 CrossRef Google Scholar

[11] Bashyam R, Zelenay P. Nature, 2006, 443: 63-66 CrossRef PubMed Google Scholar

[12] Chen P, Zhou T, Xing L, Xu K, Tong Y, Xie H, Zhang L, Yan W, Chu W, Wu C, Xie Y. Angew Chem Int Ed, 2017, 56: 610-614 CrossRef PubMed Google Scholar

[13] Zhao L, Zhang Y, Huang LB, Liu XZ, Zhang QH, He C, Wu ZY, Zhang LJ, Wu J, Yang W, Gu L, Hu JS, Wan LJ. Nat Commun, 2019, 10: 1278 CrossRef PubMed Google Scholar

[14] Chen Y, Li Z, Zhu Y, Sun D, Liu X, Xu L, Tang Y. Adv Mater, 2019, 31: 1806312 CrossRef PubMed Google Scholar

[15] Han Y, Wang YG, Chen W, Xu R, Zheng L, Zhang J, Luo J, Shen RA, Zhu Y, Cheong WC, Chen C, Peng Q, Wang D, Li Y. J Am Chem Soc, 2017, 139: 17269-17272 CrossRef PubMed Google Scholar

[16] Lu S, Jin Y, Gu H, Zhang W. Sci China Chem, 2017, 60: 999-1006 CrossRef Google Scholar

[17] Wang X, Li P, Li Z, Chen W, Zhou H, Zhao Y, Wang X, Zheng L, Dong J, Lin Y, Zheng X, Yan W, Yang J, Yang Z, Qu Y, Yuan T, Wu Y, Li Y. Chem Commun, 2019, 55: 6563-6566 CrossRef PubMed Google Scholar

[18] Yi JD, Xu R, Wu Q, Zhang T, Zang KT, Luo J, Liang YL, Huang YB, Cao R. ACS Energy Lett, 2018, 3: 883-889 CrossRef Google Scholar

[19] Liu W, Wang K, Wang C, Liu W, Pan H, Xiang Y, Qi D, Jiang J. J Mater Chem A, 2018, 6: 22851-22857 CrossRef Google Scholar

[20] Lim AC, Jadhav HS, Seo JG. Dalton Trans, 2018, 47: 852-858 CrossRef PubMed Google Scholar

[21] Hua X, Luo J, Shen C, Chen S. Catal Sci Technol, 2018, 8: 1945-1952 CrossRef Google Scholar

[22] Wang L, Pumera M. Chem Commun, 2014, 50: 12662-12664 CrossRef PubMed Google Scholar

[23] Yan X, Jia Y, Yao X. Chem Soc Rev, 2018, 47: 7628-7658 CrossRef PubMed Google Scholar

[24] Xu XL, Lin FW, Xu W, Wu J, Xu ZK. Chem Eur J, 2015, 21: 984-987 CrossRef PubMed Google Scholar

[25] El-Deab MS, Ohsaka T. Electrochim Acta, 2002, 47: 4255-4261 CrossRef Google Scholar

[26] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nat Mater, 2011, 10: 780-786 CrossRef PubMed Google Scholar

[27] He X, He Q, Deng Y, Peng M, Chen H, Zhang Y, Yao S, Zhang M, Xiao D, Ma D, Ge B, Ji H. Nat Commun, 2019, 10: 3663 CrossRef PubMed Google Scholar

[28] He Q, Meng Y, Zhang H, Zhang Y, Chen H, Xiao H, He X, Wu M, Ji H. Catal Sci Technol, 2019, 9: 6556-6560 CrossRef Google Scholar

[29] Wang X, Chen Z, Zhao X, Yao T, Chen W, You R, Zhao C, Wu G, Wang J, Huang W, Yang J, Hong X, Wei S, Wu Y, Li Y. Angew Chem Int Ed, 2018, 57: 1944-1948 CrossRef PubMed Google Scholar

[30] Song P, Zhang Y, Pan J, Zhuang L, Xu W. Chem Commun, 2015, 51: 1972-1975 CrossRef PubMed Google Scholar

[31] Chen Y, Ji S, Zhao S, Chen W, Dong J, Cheong WC, Shen R, Wen X, Zheng L, Rykov AI, Cai S, Tang H, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Nat Commun, 2018, 9: 5422 CrossRef PubMed Google Scholar

[32] Liang S, Chen R, Yu P, Ni M, Zhang Q, Zhang X, Yang W. Chem Commun, 2017, 53: 11453-11456 CrossRef PubMed Google Scholar

[33] Tan H, Tang J, Henzie J, Li Y, Xu X, Chen T, Wang Z, Wang J, Ide Y, Bando Y, Yamauchi Y. ACS Nano, 2018, 12: 5674-5683 CrossRef Google Scholar

[34] Cheng Q, Yang L, Zou L, Zou Z, Chen C, Hu Z, Yang H. ACS Catal, 2017, 7: 6864-6871 CrossRef Google Scholar

[35] Jiao L, Wan G, Zhang R, Zhou H, Yu SH, Jiang HL. Angew Chem Int Ed, 2018, 57: 8525-8529 CrossRef PubMed Google Scholar

[36] Miao Z, Wang X, Tsai MC, Jin Q, Liang J, Ma F, Wang T, Zheng S, Hwang BJ, Huang Y, Guo S, Li Q. Adv Energy Mater, 2018, 8: 1801226 CrossRef Google Scholar

[37] Li JC, Xiao F, Zhong H, Li T, Xu M, Ma L, Cheng M, Liu D, Feng S, Shi Q, Cheng HM, Liu C, Du D, Beckman SP, Pan X, Lin Y, Shao M. ACS Catal, 2019, 9: 5929-5934 CrossRef Google Scholar

[38] Han A, Chen W, Zhang S, Zhang M, Han Y, Zhang J, Ji S, Zheng L, Wang Y, Gu L, Chen C, Peng Q, Wang D, Li Y. Adv Mater, 2018, 30: 1706508 CrossRef PubMed Google Scholar

[39] Wang J, Zhang H, Wang C, Zhang Y, Wang J, Zhao H, Cheng M, Li A, Wang J. Energy Storage Mater, 2018, 12: 1-7 CrossRef Google Scholar

[40] Gojković SL, Gupta S, Savinell RF. J Electroanal Chem, 1999, 462: 63-72 CrossRef Google Scholar

[41] Meng Y, Voiry D, Goswami A, Zou X, Huang X, Chhowalla M, Liu Z, Asefa T. J Am Chem Soc, 2014, 136: 13554-13557 CrossRef PubMed Google Scholar

[42] Sarapuu A, Kibena-Põldsepp E, Borghei M, Tammeveski K. J Mater Chem A, 2018, 6: 776-804 CrossRef Google Scholar

[43] Huang S, Meng Y, Cao Y, He S, Li X, Tong S, Wu M. Appl Catal B-Environ, 2019, 248: 239-248 CrossRef Google Scholar

[44] Jiang WJ, Hu WL, Zhang QH, Zhao TT, Luo H, Zhang X, Gu L, Hu JS, Wan LJ. Chem Commun, 2018, 54: 1307-1310 CrossRef PubMed Google Scholar

[45] Lefèvre M, Proietti E, Jaouen F, Dodelet JP. Science, 2009, 324: 71-74 CrossRef PubMed Google Scholar

[46] Chung HT, Cullen DA, Higgins D, Sneed BT, Holby EF, More KL, Zelenay P. Science, 2017, 357: 479-484 CrossRef PubMed Google Scholar

[47] Chen DJ, Tong YYJ. Angew Chem Int Ed, 2015, 54: 9394-9398 CrossRef PubMed Google Scholar

[48] Liu D, Wu C, Chen S, Ding S, Xie Y, Wang C, Wang T, Haleem YA, ur Rehman Z, Sang Y, Liu Q, Zheng X, Wang Y, Ge B, Xu H, Song L. Nano Res, 2018, 11: 2217-2228 CrossRef Google Scholar

[49] Liu Y, Huang B, Zhang X, Huang X, Xie Z. J Power Sources, 2019, 412: 125-133 CrossRef Google Scholar

[50] Yang H, Chen X, Chen WT, Wang Q, Cuello NC, Nafady A, Al-Enizi AM, Waterhouse GIN, Goenaga GA, Zawodzinski TA, Kruger PE, Clements JE, Zhang J, Tian H, Telfer SG, Ma S. ACS Nano, 2019, 13: 8087-8098 CrossRef Google Scholar

  • Figure 1

    The morphology of Fe-N-C-900: (a) TEM image, (b) STEM image, (c) AC HAADF-STEM image (Fe single atoms were highlighted by yellow circles), and (d) corresponding element mappings (color online).

  • Scheme 1

    Schematic illustration of the preparation of Fe-N-C-type catalysts. The molar ratio of FeTAPP:TAPP is 1:20 (color online).

  • Figure 2

    High-resolution XPS spectra of (a) N 1s and (b) Fe 2p of Fe-N-C-900. (c) Normalized XANES and (d) magnitudes of Fourier-transforms of k3-weighted EXAFS data of Fe-N-C-900 with reference compounds (Fe foil, Fe2O3 and FeTPPCl). (e) Fe K-edge wavelet transformed (WT) EXAFS for Fe foil and Fe-N-C-900. (f) The corresponding EXAFS R space fitting curves for Fe-N-C-900 (the red sphere symbolizes an iron atom whereas cyan spheres are oxygen atoms, blue spheres are nitrogen atoms and gray spheres are carbon atoms) (color online).

  • Figure 3

    Physical characterizations of Fe-N-C-T materials (T=700, 800, 900 or 1000, 1100 °C). (a) XRD patterns; (b) Raman spectra; (c) N2 adsorption/desorption isotherms and (d) BJH pore size distributions (color online).

  • Figure 4

    Electrochemical performance of catalysts toward ORR. (a) CV curves of Fe-N-C-900 in O2- or N2-saturated 0.1 M KOH solution. (b) Polarization curves of Fe-N-C-900 on RDE rotating at different rotation speeds (the insert n value based on the K-L equation). (c) The n and H2O2 yield of Fe-N-C-900, obtained from RRDE technique at 1600 r min−1. (d) Polarization curves of ORR over 20 wt% Pt/C, N-C-900, and Fe-N-C-900 catalysts at 1600 r min−1. (e) Tafel plots of Fe-N-C-900 and 20 wt% Pt/C at 1600 r min−1. (f) Current densities at three different potentials of Fe-N-C-T catalysts at 1600 r min−1 (T=700–1100 °C) (color online).

  • Figure 5

    (a) ORR polarization curves for the Fe-N-C-900 electrocatalyst and the catalyst with 10 mM KSCN or 3.0 M methanol in O2-saturated 0.1 M KOH solution. b) Chronoamperometric curves for Fe-N-C-900 and commercial 20 wt% Pt/C in O2-saturated 0.1 KOH solution at a constant potential of 0.45 V at 1600 r min−1 (color online).