logo

Porous phosphorus-rich CoP3/CoSnO2 hybrid nanocubes for high-performance Zn-air batteries

More info
  • ReceivedJan 19, 2020
  • AcceptedFeb 10, 2020
  • PublishedMar 17, 2020

Abstract


Funded by

the National Natural Science Foundation of China(NSFC-21671170,21673203,21875207,21201010)

the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)

Program for New Century Excellent Talents of the University in China(NCET-13-0645)

Postgraduate Research & Practice Innovation Program of Jiangsu Province(XSJCX17-015)

Yangzhou University Graduate Student International Academic Exchange Special Fund Project and the Technical Support we received at the Testing Center of Yangzhou University.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (NSFC-21671170, 21673203, 21875207, 21201010), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP), Program for New Century Excellent Talents of the University in China (NCET-13-0645) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (XSJCX17-015). We also acknowledge the Priority Academic Program Development of Jiangsu Higher Education Institutions, Yangzhou University Graduate Student International Academic Exchange Special Fund Project and the Technical Support we received at the Testing Center of Yangzhou University.


Interest statement

The authors declare that they have no conflicts of interest.


Supplement

Supporting Information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Hao Y, Xu Y, Liu W, Sun X. Mater Horiz, 2018, 5: 108-115 CrossRef Google Scholar

[2] Xiao X, He CT, Zhao S, Li J, Lin W, Yuan Z, Zhang Q, Wang S, Dai L, Yu D. Energy Environ Sci, 2017, 10: 893-899 CrossRef Google Scholar

[3] Xu J, Li J, Xiong D, Zhang B, Liu Y, Wu KH, Amorim I, Li W, Liu L. Chem Sci, 2018, 9: 3470-3476 CrossRef PubMed Google Scholar

[4] Jin S. ACS Energy Lett, 2017, 2: 1937-1938 CrossRef Google Scholar

[5] Yan H, Tian C, Wang L, Wu A, Meng M, Zhao L, Fu H. Angew Chem Int Ed, 2015, 54: 6325-6329 CrossRef PubMed Google Scholar

[6] Gao S, Liu Y, Li GD, Guo Y, Zou Y, Zou X. Electrochim Acta, 2016, 199: 99-107 CrossRef Google Scholar

[7] Ha DH, Han B, Risch M, Giordano L, Yao KPC, Karayaylali P, Shao-Horn Y. Nano Energy, 2016, 29: 37-45 CrossRef Google Scholar

[8] Wu A, Tian C, Yan H, Jiao Y, Yan Q, Yang G, Fu H. Nanoscale, 2016, 8: 11052-11059 CrossRef PubMed Google Scholar

[9] Xue ZH, Su H, Yu QY, Zhang B, Wang HH, Li XH, Chen JS. Adv Energy Mater, 2017, 7: 1602355 CrossRef Google Scholar

[10] Wang T, Jiang Y, Zhou Y, Du Y, Wang C. Appl Surf Sci, 2018, 442: 1-11 CrossRef Google Scholar

[11] Wu T, Pi M, Zhang D, Chen S. J Mater Chem A, 2016, 4: 14539-14544 CrossRef Google Scholar

[12] Yin T, Zhou X, Wu A, Yan H, Feng Q, Tian C. Electrochim Acta, 2018, 276: 362-369 CrossRef Google Scholar

[13] Hu B, Yuan JY, Tian JY, Wang M, Wang X, He L, Zhang Z, Wang ZW, Liu CS. J Colloid Interface Sci, 2018, 531: 148-159 CrossRef PubMed Google Scholar

[14] Son CY, Kwak IH, Lim YR, Park J. Chem Commun, 2016, 52: 2819-2822 CrossRef PubMed Google Scholar

[15] Wu T, Pi M, Wang X, Guo W, Zhang D, Chen S. J Alloys Compd, 2017, 729: 203-209 CrossRef Google Scholar

[16] Hu B, Liu Y, Wang ZW, Song Y, Wang M, Zhang Z, Liu CS. Appl Surf Sci, 2018, 441: 694-707 CrossRef Google Scholar

[17] Liu R, Wang Y, Liu D, Zou Y, Wang S. Adv Mater, 2017, 29: 1701546 CrossRef PubMed Google Scholar

[18] Lin Y, Sun K, Liu S, Chen X, Cheng Y, Cheong W‐, Chen Z, Zheng L, Zhang J, Li X, Pan Y, Chen C. Adv Energy Mater, 2019, 9: 1901213 CrossRef Google Scholar

[19] Zeng Y, Wang Y, Huang G, Chen C, Huang L, Chen R, Wang S. Chem Commun, 2018, 54: 1465-1468 CrossRef PubMed Google Scholar

[20] Yan D, Li Y, Huo J, Chen R, Dai L, Wang S. Adv Mater, 2017, 29: 1606459 CrossRef PubMed Google Scholar

[21] Kumar A, Bhattacharyya S. ACS Appl Mater Interfaces, 2017, 9: 41906-41915 CrossRef Google Scholar

[22] Wu YP, Tian JW, Liu S, Li B, Zhao J, Ma LF, Li DS, Lan YQ, Bu X. Angew Chem Int Ed, 2019, 58: 12185-12189 CrossRef PubMed Google Scholar

[23] Wang X, Yu L, Guan BY, Song S, Lou XWD. Adv Mater, 2018, 30: 1801211 CrossRef PubMed Google Scholar

[24] He Q, Li S, Huang S, Xiao L, Hou L. Nanoscale, 2018, 10: 22012-22024 CrossRef PubMed Google Scholar

[25] Amiinu IS, Liu X, Pu Z, Li W, Li Q, Zhang J, Tang H, Zhang H, Mu S. Adv Funct Mater, 2018, 28: 1704638 CrossRef Google Scholar

[26] Zhai ZM, Yang XG, Yang ZT, Lu XM, Ma LF. CrystEngComm, 2019, 21: 5862-5866 CrossRef Google Scholar

[27] Ma J, Xiang Z, Zhang J. Sci China Chem, 2018, 61: 592-597 CrossRef Google Scholar

[28] Ma J, Wen J, Li Q, Zhang Q. Int J Hydrogen Energy, 2013, 38: 14896-14902 CrossRef Google Scholar

[29] Zhao Y, Zhai ZM, Liu XY, Yang XG, Ma LF, Wang LY. J Solid State Chem, 2019, 278: 120913 CrossRef Google Scholar

[30] Zhang K, Guo W, Liang Z, Zou R. Sci China Chem, 2019, 62: 417-429 CrossRef Google Scholar

[31] Yuan CZ, Zhong SL, Jiang YF, Yang ZK, Zhao ZW, Zhao SJ, Jiang N, Xu AW. J Mater Chem A, 2017, 5: 10561-10566 CrossRef Google Scholar

[32] Ma JL, Ren FZ, Wang GX, Xiong Y, Li Y Q, Wen J B. Int J Hydrogen Energy, 2017, 42: 11654-11661 CrossRef Google Scholar

[33] Liu W, Liu H, Dang L, Zhang H, Wu X, Yang B, Li Z, Zhang X, Lei L, Jin S. Adv Funct Mater, 2017, 27: 1603904 CrossRef Google Scholar

[34] Zhu X, Sun M, Ni J, Li L. Sci China Chem, 2018, 61: 1494-1502 CrossRef Google Scholar

[35] Xie M, Yang L, Ji Y, Wang Z, Ren X, Liu Z, Asiri AM, Xiong X, Sun X. Nanoscale, 2017, 9: 16612-16615 CrossRef PubMed Google Scholar

[36] Pan Y, Sun K, Liu S, Cao X, Wu K, Cheong WC, Chen Z, Wang Y, Li Y, Liu Y, Wang D, Peng Q, Chen C, Li Y. J Am Chem Soc, 2018, 140: 2610-2618 CrossRef PubMed Google Scholar

[37] Tian J, Liu Q, Asiri AM, Sun X. J Am Chem Soc, 2014, 136: 7587-7590 CrossRef PubMed Google Scholar

[38] Xiong X, Ji Y, Xie M, You C, Yang L, Liu Z, Asiri AM, Sun X. Electrochem Commun, 2018, 86: 161-165 CrossRef Google Scholar

[39] Zhang Y, Shao Q, Long S, Huang X. Nano Energy, 2018, 45: 448-455 CrossRef Google Scholar

[40] Jiang D, Xu Y, Yang R, Li D, Meng S, Chen M. ACS Sustain Chem Eng, 2019, 7: 9309-9317 CrossRef Google Scholar

  • Figure 1

    Illustration of the preparation for the samples obtained at different temperatures for different durations (color online).

  • Figure 2

    XRD patterns of CS350-5Ar and CS350-10Ar (a), CS500-5Ar (b), CS500-10Ar (c), and CS500-10Air (d) (color online).

  • Figure 3

    SEM image (a), and TEM images (b, c) at different magnifications; (d) HRTEM and SAED images of CS350-10Ar; (e) elemental mapping of all elements (Co, P, Sn, and O) in a CoP3/CoSnO2 cube (color online).

  • Figure 4

    (a) LSV curves, (b) Tafel slopes of CS350-5Ar (black line), CS350-10Ar (red line), CS500-5Ar (blue line), CS500-10Ar (green line), CS500-10Air (purple line), commercial RuO2 (orange line), and 20 wt% Pt/C (dark purple). (c) The LSV polarization curves of CS350-5Ar, CS350-10Ar, CS500-5Ar, CS500-10Ar, commercial RuO2, and 20 wt% Pt/C with a rotating speed of in 1600 r min−1 in 0.1 M KOH solution. (d) ORR electron transfer number calculated by LSV plots (color online).

  • Figure 5

    (a) Schematic diagram of a Zn-air battery; (b) polarization curve and corresponding power density plots; (c) the multi-current discharging curves of the Zn-air batteries with CS350-10Ar and commercial RuO2 & 20 wt% Pt/C as the cathode catalyst; (d) discharging-charging cycling curves at 5 mA cm−2 for 120 cycles of the Zn-air battery with CS350-10Ar as the cathode catalyst (color online).