the Singapore MOE AcRF Tier 2 Grant(MOE2017-T2-1-073)
AME Individual Research Grant(A1983c0026)
and Agency for Science
Technology
and Research(A*STAR)
This work was supported by the Singapore MOE AcRF Tier 2 Grant (MOE2017-T2-1-073), AME Individual Research Grant (A1983c0026), and Agency for Science, Technology, and Research (A*STAR).
The authors declare that they have no conflict of interest.
These authors contributed equally to this work.
The supporting information is available online at
[1] Fu J, Liang R, Liu G, Yu A, Bai Z, Yang L, Chen Z. Adv Mater, 2019, 31: 1805230 CrossRef PubMed Google Scholar
[2] Yang D, Zhang L, Yan X, Yao X. Small Methods, 2017, 1: 1700209 CrossRef Google Scholar
[3] Liu X, Jiang L, Zhu Z, Chen S, Dou Y, Liu P, Wang Y, Yin H, Tang Z, Zhao H. Mater Today Energy, 2019, 11: 24-29 CrossRef Google Scholar
[4] Chen X, Zhou Z, Karahan HE, Shao Q, Wei L, Chen Y. Small, 2018, 14: 1801929 CrossRef PubMed Google Scholar
[5] Dionigi F, Strasser P. Adv Energy Mater, 2016, 6: 1600621 CrossRef Google Scholar
[6] Wang HF, Tang C, Zhang Q. Adv Funct Mater, 2018, 28: 1803329 CrossRef Google Scholar
[7] Yang D, Tan H, Rui X, Yu Y. Electrochem Energ Rev, 2019, 2: 395-427 CrossRef Google Scholar
[8] Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H. Nat Commun, 2013, 4: 1805 CrossRef PubMed ADS Google Scholar
[9] Wang K, Liao C, Wang W, Xiao Y, Liu X, Zhao S. Mater Today Energy, 2019, 14: 100340 CrossRef Google Scholar
[10] Peng Z, Jia D, Al-Enizi AM, Elzatahry AA, Zheng G. Adv Energy Mater, 2015, 5: 1402031 CrossRef Google Scholar
[11] Deng S, Shen Y, Xie D, Lu Y, Yu X, Yang L, Wang X, Xia X, Tu J. J Energy Chem, 2019, 39: 61-67 CrossRef Google Scholar
[12] Qin Y, Yuan J, Zhang L, Zhao B, Liu Y, Kong Y, Cao J, Chu F, Tao Y, Liu M. Small, 2016, 12: 2549-2553 CrossRef PubMed Google Scholar
[13] Liu L, Wang Y, Yan F, Zhu C, Geng B, Chen Y, Chou S. Small Methods, 2020, 4: 1900571 CrossRef Google Scholar
[14] Fu G, Yan X, Chen Y, Xu L, Sun D, Lee JM, Tang Y. Adv Mater, 2018, 30: 1704609 CrossRef PubMed Google Scholar
[15] Hao P, Zhu W, Li L, Xin Y, Xie J, Lei F, Tian J, Tang B. Chem Commun, 2019, 55: 10138-10141 CrossRef PubMed Google Scholar
[16] Guan C, Sumboja A, Wu H, Ren W, Liu X, Zhang H, Liu Z, Cheng C, Pennycook SJ, Wang J. Adv Mater, 2017, 29: 1704117 CrossRef PubMed Google Scholar
[17] Ma TY, Dai S, Jaroniec M, Qiao SZ. J Am Chem Soc, 2014, 136: 13925-13931 CrossRef PubMed Google Scholar
[18] Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z, Somsen C, Muhler M, Schuhmann W. Adv Energy Mater, 2016, 6: 1502313 CrossRef Google Scholar
[19] Xiao Z, Wang Y, Huang YC, Wei Z, Dong CL, Ma J, Shen S, Li Y, Wang S. Energy Environ Sci, 2017, 10: 2563-2569 CrossRef Google Scholar
[20] Zhang Y, Ouyang B, Xu J, Jia G, Chen S, Rawat RS, Fan HJ. Angew Chem Int Ed, 2016, 55: 8670-8674 CrossRef PubMed Google Scholar
[21] Xu K, Cheng H, Liu L, Lv H, Wu X, Wu C, Xie Y. Nano Lett, 2016, 17: 578-583 CrossRef PubMed ADS Google Scholar
[22] Aijaz A, Masa J, Rösler C, Xia W, Weide P, Botz AJR, Fischer RA, Schuhmann W, Muhler M. Angew Chem Int Ed, 2016, 55: 4087-4091 CrossRef PubMed Google Scholar
[23] Ahn SH, Manthiram A. Small, 2017, 13: 1702068 CrossRef PubMed Google Scholar
[24] Ye Z, Li T, Ma G, Dong Y, Zhou X. Adv Funct Mater, 2017, 27: 1704083 CrossRef Google Scholar
[25] Ramírez A, Hillebrand P, Stellmach D, May MM, Bogdanoff P, Fiechter S. J Phys Chem C, 2014, 118: 14073-14081 CrossRef Google Scholar
[26] Yang Y, Wang Y, Xiong Y, Huang X, Shen L, Huang R, Wang H, Pastore JP, Yu SH, Xiao L, Brock JD, Zhuang L, Abruña HD. J Am Chem Soc, 2019, 141: 1463-1466 CrossRef PubMed Google Scholar
[27] Han X, Zhang W, Ma X, Zhong C, Zhao N, Hu W, Deng Y. Adv Mater, 2019, 31: 1808281 CrossRef PubMed Google Scholar
[28] Fu G, Wang J, Chen Y, Liu Y, Tang Y, Goodenough JB, Lee JM. Adv Energy Mater, 2018, 8: 1802263 CrossRef Google Scholar
[29] Li YJ, Cui L, Da PF, Qiu KW, Qin WJ, Hu WB, Du XW, Davey K, Ling T, Qiao SZ. Adv Mater, 2018, 30: 1804653 CrossRef PubMed Google Scholar
[30] Qiu HJ, Du P, Hu K, Gao J, Li H, Liu P, Ina T, Ohara K, Ito Y, Chen M. Adv Mater, 2019, 31: 1900843 CrossRef PubMed Google Scholar
[31] Chen Z, Song Y, Cai J, Zheng X, Han D, Wu Y, Zang Y, Niu S, Liu Y, Zhu J, Liu X, Wang G. Angew Chem Int Ed, 2018, 57: 5076-5080 CrossRef PubMed Google Scholar
[32] Meng C, Ling T, Ma TY, Wang H, Hu Z, Zhou Y, Mao J, Du XW, Jaroniec M, Qiao SZ. Adv Mater, 2017, 29: 1604607 CrossRef PubMed Google Scholar
[33] Ouyang B, Zhang Y, Xia X, Rawat RS, Fan HJ. Mater Today Nano, 2018, 3: 28-47 CrossRef Google Scholar
[34] Zhang Y, Rawat RS, Fan HJ. Small Methods, 2017, 1: 1700164 CrossRef Google Scholar
[35] Walter C, Menezes PW, Orthmann S, Schuch J, Connor P, Kaiser B, Lerch M, Driess M. Angew Chem Int Ed, 2018, 57: 698-702 CrossRef PubMed Google Scholar
[36] Ouyang B, Zhang Y, Wang Y, Zhang Z, Fan HJ, Rawat RS. J Mater Chem A, 2016, 4: 17801-17808 CrossRef Google Scholar
[37] Xu K, Ding H, Lv H, Chen P, Lu X, Cheng H, Zhou T, Liu S, Wu X, Wu C, Xie Y. Adv Mater, 2016, 28: 3326-3332 CrossRef PubMed Google Scholar
[38] Cui X, Ren P, Deng D, Deng J, Bao X. Energy Environ Sci, 2016, 9: 123-129 CrossRef Google Scholar
[39] Liang H, Gandi AN, Anjum DH, Wang X, Schwingenschlögl U, Alshareef HN. Nano Lett, 2016, 16: 7718-7725 CrossRef PubMed ADS Google Scholar
[40] Zhu L, Zheng D, Wang Z, Zheng X, Fang P, Zhu J, Yu M, Tong Y, Lu X. Adv Mater, 2018, 30: 1805268 CrossRef PubMed Google Scholar
[41] Ji D, Fan L, Li L, Peng S, Yu D, Song J, Ramakrishna S, Guo S. Adv Mater, 2019, 31: 1808267 CrossRef PubMed Google Scholar
[42] Ma L, Chen S, Pei Z, Li H, Wang Z, Liu Z, Tang Z, Zapien JA, Zhi C. ACS Nano, 2018, 12: 8597-8605 CrossRef Google Scholar
[43] Zhang X, Wu S, Deng S, Wu W, Zeng Y, Xia X, Pan G, Tong Y, Lu X. Small Methods, 2019, 3: 1900525 CrossRef Google Scholar
[44] Liu Q, Chang Z, Li Z, Zhang X. Small Methods, 2018, 2: 1700231 CrossRef Google Scholar
Figure 1
Thermodynamics of the Mn doping effect by first-principle calculation. (a) Optimized atomic configurations of OOH, O, and OH intermediates adsorbed on the active sites (*) in Mn-doped CoN surface. (b) Comparison of partial density of states (PDOS) of Mn-doped CoN and undoped CoN. (c) Free energy diagrams at
Figure 2
Morphology and characterization of Mn-CoN-1.5. (a) XRD patterns for Co3O4, Mn-Co3O4-1.5 and Mn-CoN-1.5; (b) SEM image of Mn-CoN-1.5; (c) low- and (d) high-magnification TEM images of Mn-CoN-1.5; (e) HAADF-STEM image and the corresponding EDX maps for Co, Mn and N (color online).
Figure 3
Survey analysis by XPS. (a) Survey spectra of CoN, Mn-CoN-1, Mn-CoN-1.5, Mn-CoN-2; high-resolution XPS spectra of Co 2p (b), Mn 2p (c) and N 1s (d) of Mn-Co3O4-1.5 and Mn-CoN-1.5 (color online).
Figure 4
The bifunctional electrocatalysis. LSV curves (a) and Tafel slopes (b) for OER. (c) CV curves in N2-saturated and O2-saturated 0.1 M KOH electrolyte and (d) LSV curves in O2-saturated 0.1 M KOH at 1600 r min−1 for ORR. Stability test of Mn-CoN-1.5 for OER at
Figure 5
Performance of rechargeable ZAB devices. (a) Schematic of the aqueous ZAB using Mn-CoN-1.5 as the air-cathode. (b) Open circuit voltage of Mn-CoN-1.5 and 20% Pt/C cathode ZABs (upper two branches). Also shown (bottom two branches) are discharge curves of the Mn-CoN-1.5 cathode ZAB at the current density of 5 and