logo

Mesostructured carbon-based nanocages: an advanced platform for energy chemistry

More info
  • ReceivedJan 8, 2020
  • AcceptedApr 15, 2020
  • PublishedApr 22, 2020

Abstract


Funded by

the National Key Research and Development Program of China(2017YFA0206500,2018YFA0209103)

and the National Natural Science Foundation of China(21832003,21773111,51571110,21573107)


Acknowledgment

This work was supported by the National Key Research and Development Program of China (2017YFA0206500, 2018YFA0209103), and the National Natural Science Foundation of China (21832003, 21773111, 51571110, 21573107).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Chu S, Cui Y, Liu N. Nat Mater, 2017, 16: 16-22 CrossRef PubMed ADS Google Scholar

[2] De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. Science, 2019, 364: eaav3506 CrossRef PubMed ADS Google Scholar

[3] Sun H, Zhu J, Baumann D, Peng L, Xu Y, Shakir I, Huang Y, Duan X. Nat Rev Mater, 2019, 4: 45-60 CrossRef ADS Google Scholar

[4] Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Science, 2019, 366: eaan8285 CrossRef PubMed Google Scholar

[5] Li G, Huang B, Pan Z, Su X, Shao Z, An L. Energy Environ Sci, 2019, 12: 2030-2053 CrossRef Google Scholar

[6] Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. Nature, 1985, 318: 162-163 CrossRef ADS Google Scholar

[7] Iijima S. Nature, 1991, 354: 56-58 CrossRef ADS Google Scholar

[8] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666-669 CrossRef ADS arXiv Google Scholar

[9] Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem Commun, 2010, 46: 3256-3258 CrossRef PubMed Google Scholar

[10] Wu Q, Yang L, Wang X, Hu Z. Adv Mater, 2019, : 1904177 CrossRef PubMed Google Scholar

[11] Tian H, Liang J, Liu J. Adv Mater, 2019, 31: 1903886 CrossRef PubMed Google Scholar

[12] Zhang X, Zhu Y, Bruck AM, Housel LM, Wang L, Quilty CD, Takeuchi KJ, Takeuchi ES, Marschilok AC, Yu G. Energy Storage Mater, 2019, 19: 439-445 CrossRef Google Scholar

[13] Lyu Z, Xu D, Yang L, Che R, Feng R, Zhao J, Li Y, Wu Q, Wang X, Hu Z. Nano Energy, 2015, 12: 657-665 CrossRef Google Scholar

[14] Service RF. Science, 2012, 335: 1167-1168 CrossRef PubMed Google Scholar

[15] Hemminger J, Crabtree G, Sarrao J. From quanta to the continuum: opportunities for mesoscale science. A report from the Basic Energy Science Advisory Committee. US: Department of Energy, 2012. Google Scholar

[16] Lang X, Hirata A, Fujita T, Chen M. Nat Nanotech, 2011, 6: 232-236 CrossRef PubMed ADS Google Scholar

[17] Lu Q, Lattanzi MW, Chen Y, Kou X, Li W, Fan X, Unruh KM, Chen JG, Xiao JQ. Angew Chem Int Ed, 2011, 50: 6847-6850 CrossRef PubMed Google Scholar

[18] Parlett CMA, Wilson K, Lee AF. Chem Soc Rev, 2013, 42: 3876-3893 CrossRef PubMed Google Scholar

[19] Shi H, Fang Z, Zhang X, Li F, Tang Y, Zhou Y, Wu P, Yu G. Nano Lett, 2018, 18: 3193-3198 CrossRef PubMed ADS Google Scholar

[20] Wu Q, Yang L, Wang X, Hu Z. Acc Chem Res, 2017, 50: 435-444 CrossRef PubMed Google Scholar

[21] Ugarte D. Nature, 1992, 359: 707-709 CrossRef PubMed ADS Google Scholar

[22] Kroto HW. Nature, 1992, 359: 670-671 CrossRef ADS Google Scholar

[23] Saito Y, Yoshikawa T, Okuda M, Ohkohchi M, Ando Y, Kasuya A, Nishina Y. Chem Phys Lett, 1993, 209: 72-76 CrossRef Google Scholar

[24] Saito Y, Yoshikawa T, Okuda M, Fujimoto N, Sumiyama K, Suzuki K, Kasuya A, Nishina Y. J Phys Chem Solids, 1993, 54: 1849-1860 CrossRef Google Scholar

[25] Yosida Y, Shida S, Ohsuna T, Shiraga N. J Appl Phys, 1994, 76: 4533-4539 CrossRef ADS Google Scholar

[26] Seraphin S, Zhou D, Jiao J. J Appl Phys, 1996, 80: 2097-2104 CrossRef ADS Google Scholar

[27] Messina G, Santangelo S. Carbon, the Future Material for Advanced Technology Applications. In: Ascheron CE, Koelsch HJ, Duhm AH, Eds. Topics in Applied Physics. Volume 100. Berlin Heidelberg: Springer-Verlag, 2006. 187–216. Google Scholar

[28] Jang J, Lim B. Adv Mater, 2002, 14: 1390-1393 CrossRef Google Scholar

[29] Lee KT, Jung YS, Oh SM. J Am Chem Soc, 2003, 125: 5652-5653 CrossRef PubMed Google Scholar

[30] Chai GS, Yoon SB, Kim JH, Yu JS. Chem Commun, 2004, 23: 2766-2767 CrossRef PubMed Google Scholar

[31] Wang XZ, Qian MJ, Xiao P, Jiang XF, Jian GQ, Hu Z. Chinese Patent. ZL200810023448.X. 2010-02-03. Google Scholar

[32] Xie K, Qin X, Wang X, Wang Y, Tao H, Wu Q, Yang L, Hu Z. Adv Mater, 2012, 24: 347-352 CrossRef PubMed Google Scholar

[33] Chen S, Bi J, Zhao Y, Yang L, Zhang C, Ma Y, Wu Q, Wang X, Hu Z. Adv Mater, 2012, 24: 5593-5597 CrossRef PubMed Google Scholar

[34] Zhao J, Lai H, Lyu Z, Jiang Y, Xie K, Wang X, Wu Q, Yang L, Jin Z, Ma Y, Liu J, Hu Z. Adv Mater, 2015, 27: 3541-3545 CrossRef PubMed Google Scholar

[35] Bu Y, Sun T, Cai Y, Du L, Zhuo O, Yang L, Wu Q, Wang X, Hu Z. Adv Mater, 2017, 29: 1700470 CrossRef PubMed Google Scholar

[36] Du L, Wu Q, Yang L, Wang X, Che R, Lyu Z, Chen W, Wang X, Hu Z. Nano Energy, 2019, 57: 34-40 CrossRef Google Scholar

[37] Shen L, Sun T, Zhuo O, Che R, Li D, Ji Y, Bu Y, Wu Q, Yang L, Chen Q, Wang X, Hu Z. ACS Appl Mater Interfaces, 2016, 8: 16664-16669 CrossRef Google Scholar

[38] Jiang Y, Yang L, Sun T, Zhao J, Lyu Z, Zhuo O, Wang X, Wu Q, Ma J, Hu Z. ACS Catal, 2015, 5: 6707-6712 CrossRef Google Scholar

[39] Zhang Z, Wu Q, Mao K, Chen Y, Du L, Bu Y, Zhuo O, Yang L, Wang X, Hu Z. ACS Catal, 2018, 8: 8477-8483 CrossRef Google Scholar

[40] Zhang Z, Chen Y, Zhou L, Chen C, Han Z, Zhang B, Wu Q, Yang L, Du L, Bu Y, Wang P, Wang X, Yang H, Hu Z. Nat Commun, 2019, 10: 1657 CrossRef PubMed ADS Google Scholar

[41] Zhuo O, Yang L, Gao F, Xu B, Wu Q, Fan Y, Zhang Y, Jiang Y, Huang R, Wang X, Hu Z. Chem Sci, 2019, 10: 6083-6090 CrossRef PubMed Google Scholar

[42] Du L, Cheng X, Gao F, Li Y, Bu Y, Zhang Z, Wu Q, Yang L, Wang X, Hu Z. Chem Commun, 2019, 55: 6365-6368 CrossRef PubMed Google Scholar

[43] Fan H, Wang Y, Gao F, Yang L, Liu M, Du X, Wang P, Yang L, Wu Q, Wang X, Hu Z. J Energy Chem, 2019, 34: 64-71 CrossRef Google Scholar

[44] Cai S, Meng Z, Tang H, Wang Y, Tsiakaras P. Appl Catal B-Environ, 2017, 217: 477-484 CrossRef Google Scholar

[45] Woo SW, Dokko K, Sasajima K, Takei T, Kanamura K. Chem Commun, 2006, : 4099-4101 CrossRef PubMed Google Scholar

[46] Chen M, Su Z, Jiang K, Pan Y, Zhang Y, Long D. J Mater Chem A, 2019, 7: 6250-6258 CrossRef Google Scholar

[47] Chen Z, Ye S, Evans SD, Ge Y, Zhu Z, Tu Y, Yang X. Small, 2018, 14: 1704015 CrossRef PubMed Google Scholar

[48] Zhang R, Hummelgård M, Olin H. Carbon, 2010, 48: 424-430 CrossRef Google Scholar

[49] Zhang H, Gai P, Cheng R, Wu L, Zhang X, Chen J. Anal Methods, 2013, 5: 3591-3600 CrossRef Google Scholar

[50] Zhang J, Yang CP, Yin YX, Wan LJ, Guo YG. Adv Mater, 2016, 28: 9539-9544 CrossRef PubMed Google Scholar

[51] Wang X, Li Y, Du L, Gao F, Wu Q, Yang L, Chen Q, Wang X, Hu Z. Acta Chim Sin, 2018, 76: 627-632 CrossRef Google Scholar

[52] Zhang H, Cao G, Yang Y. Energy Environ Sci, 2009, 2: 932-943 CrossRef Google Scholar

[53] Sun Y, Wu Q, Shi G. Energy Environ Sci, 2011, 4: 1113-1132 CrossRef Google Scholar

[54] Liu J, Wang X, Gao J, Zhang Y, Lu Q, Liu M. Electrochim Acta, 2016, 211: 183-192 CrossRef Google Scholar

[55] Shao J, Song M, Wu G, Zhou Y, Wan J, Ren X, Ma F. Energy Storage Mater, 2018, 13: 57-65 CrossRef Google Scholar

[56] Wu ZS, Parvez K, Feng X, Müllen K. Nat Commun, 2013, 4: 2487 CrossRef PubMed ADS Google Scholar

[57] Zhao J, Jiang Y, Fan H, Liu M, Zhuo O, Wang X, Wu Q, Yang L, Ma Y, Hu Z. Adv Mater, 2017, 29: 1604569 CrossRef PubMed Google Scholar

[58] Yang X, Cheng C, Wang Y, Qiu L, Li D. Science, 2013, 341: 534-537 CrossRef PubMed ADS Google Scholar

[59] Xu Y, Lin Z, Zhong X, Huang X, Weiss NO, Huang Y, Duan X. Nat Commun, 2014, 5: 4554 CrossRef PubMed ADS Google Scholar

[60] Ma Q, Yao Y, Yan M, Zhao J, Ge C, Wu Q, Yang L, Wang X, Hu Z. Sci China Mater, 2019, 62: 1393-1402 CrossRef Google Scholar

[61] Zhang G, Ren L, Hu D, Zhang S, Gu H. J Alloys Compd, 2019, 781: 407-414 CrossRef Google Scholar

[62] Lin TW, Hsiao MC, Wang AY, Lin JY. ChemElectroChem, 2017, 4: 620-627 CrossRef Google Scholar

[63] Lyu Z, Yang L, Xu D, Zhao J, Lai H, Jiang Y, Wu Q, Li Y, Wang X, Hu Z. Nano Res, 2015, 8: 3535-3543 CrossRef Google Scholar

[64] Zang J, Chen JJ, Zhang CL, Qian H, Zheng MS, Dong QF. J Mater Chem A, 2014, 2: 6343-6347 CrossRef Google Scholar

[65] Zhang S, Wang G, Zhang Z, Wang B, Bai J, Wang H. Small, 2019, 15: 1900565 CrossRef PubMed Google Scholar

[66] Zeng X, Ding Z, Ma C, Wu L, Liu J, Chen L, Ivey DG, Wei W. ACS Appl Mater Interfaces, 2016, 8: 18841-18848 CrossRef Google Scholar

[67] Liu M, Fan H, Zhuo O, Du X, Yang L, Wang P, Yang L, Wu Q, Wang X, Hu Z. Chem Eur J, 2019, 25: 3843-3848 CrossRef PubMed Google Scholar

[68] Liu M, Fan H, Zhuo O, Chen J, Wu Q, Yang L, Peng L, Wang X, Che R, Hu Z. Nano Energy, 2020, 68: 104368 CrossRef Google Scholar

[69] Wang N, Bai Z, Fang Z, Zhang X, Xu X, Du Y, Liu L, Dou S, Yu G. ACS Mater Lett, 2019, 1: 265-271 CrossRef Google Scholar

[70] Seh ZW, Sun Y, Zhang Q, Cui Y. Chem Soc Rev, 2016, 45: 5605-5634 CrossRef PubMed Google Scholar

[71] Li Z, Wu HB, Lou (David) XW. Energy Environ Sci, 2016, 9: 3061-3070 CrossRef Google Scholar

[72] Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Angew Chem Int Ed, 2011, 50: 5904-5908 CrossRef PubMed Google Scholar

[73] Zhu X, Ye J, Lu Y, Jia X. ACS Sustain Chem Eng, 2019, 7: 11241-11249 CrossRef Google Scholar

[74] Cai J, Zhang Z, Yang S, Min Y, Yang G, Zhang K. Electrochim Acta, 2019, 295: 900-909 CrossRef Google Scholar

[75] Ma Z, Jing F, Fan Y, Li J, Zhao Y, Shao G. J Alloys Compd, 2019, 789: 71-79 CrossRef Google Scholar

[76] Liu T, Dai C, Jia M, Liu D, Bao SJ, Jiang J, Xu M, Li CM. ACS Appl Mater Interfaces, 2016, 8: 16063-16070 CrossRef Google Scholar

[77] Lu YC, Gallant BM, Kwabi DG, Harding JR, Mitchell RR, Whittingham MS, Shao-Horn Y. Energy Environ Sci, 2013, 6: 750-768 CrossRef Google Scholar

[78] Zhao C, Yu C, Liu S, Yang J, Fan X, Huang H, Qiu J. Adv Funct Mater, 2015, 25: 6913-6920 CrossRef Google Scholar

[79] Wang L, Lyu Z, Gong L, Zhang J, Wu Q, Wang X, Huo F, Huang W, Hu Z, Chen W. ChemNanoMat, 2017, 3: 415-419 CrossRef Google Scholar

[80] Jiang X, Wang X, Shen L, Wu Q, Wang Y, Ma Y, Wang X, Hu Z. Chin J Catal, 2016, 37: 1149-1155 CrossRef Google Scholar

[81] Fan H, Mao K, Liu M, Zhuo O, Zhao J, Sun T, Jiang Y, Du X, Zhang X, Wu Q, Che R, Yang L, Wu Q, Wang X, Hu Z. J Mater Chem A, 2018, 6: 21313-21319 CrossRef Google Scholar

[82] Shao M, Chang Q, Dodelet JP, Chenitz R. Chem Rev, 2016, 116: 3594-3657 CrossRef PubMed Google Scholar

[83] Wang YJ, Zhao N, Fang B, Li H, Bi XT, Wang H. Chem Rev, 2015, 115: 3433-3467 CrossRef PubMed Google Scholar

[84] Gasteiger HA, Marković NM. Science, 2009, 324: 48-49 CrossRef PubMed ADS Google Scholar

[85] Fang B, Kim JH, Kim M, Kim M, Yu JS. Phys Chem Chem Phys, 2009, 11: 1380-1387 CrossRef PubMed ADS Google Scholar

[86] Jiang L, Mi L, Wang K, Wu Y, Li Y, Liu A, Zhang Y, Hu Z, Liu S. ACS Appl Mater Interfaces, 2017, 9: 31968-31976 CrossRef Google Scholar

[87] Sun T, Wu Q, Che R, Bu Y, Jiang Y, Li Y, Yang L, Wang X, Hu Z. ACS Catal, 2015, 5: 1857-1862 CrossRef Google Scholar

[88] Sun T, Wu Q, Zhuo O, Jiang Y, Bu Y, Yang L, Wang X, Hu Z. Nanoscale, 2016, 8: 8480-8485 CrossRef PubMed ADS Google Scholar

[89] Gong K, Du F, Xia Z, Durstock M, Dai L. Science, 2009, 323: 760-764 CrossRef PubMed ADS Google Scholar

[90] Dai LM. Carbon-Based Metal-Free Catalysts: Design and Applications. Weinheim: Wiley-VCH, 2018. Google Scholar

[91] Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Adv Mater, 2019, 31: 1804799 CrossRef PubMed Google Scholar

[92] Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z. Angew Chem Int Ed, 2011, 50: 7132-7135 CrossRef PubMed Google Scholar

[93] Wu Z, Liu R, Wang J, Zhu J, Xiao W, Xuan C, Lei W, Wang D. Nanoscale, 2016, 8: 19086-19092 CrossRef PubMed Google Scholar

[94] Zhu J, Zhou H, Zhang C, Zhang J, Mu S. Nanoscale, 2017, 9: 13257-13263 CrossRef PubMed Google Scholar

[95] Jia Y, Zhang L, Zhuang L, Liu H, Yan X, Wang X, Liu J, Wang J, Zheng Y, Xiao Z, Taran E, Chen J, Yang D, Zhu Z, Wang S, Dai L, Yao X. Nat Catal, 2019, 2: 688-695 CrossRef Google Scholar

[96] Zhang J, Ma L, Gan M, Yang F, Fu S, Li X. J Power Sources, 2015, 288: 42-52 CrossRef ADS Google Scholar

[97] Peng Y, Lu B, Chen S. Adv Mater, 2018, 30: 1801995 CrossRef PubMed Google Scholar

[98] Zhang L, Doyle-Davis K, Sun X. Energy Environ Sci, 2019, 12: 492-517 CrossRef Google Scholar

[99] Wu J, Xiong L, Zhao B, Liu M, Huang L. Small Methods, 2020, 4: 1900540 CrossRef Google Scholar

[100] Jia N, Weng Q, Shi Y, Shi X, Chen X, Chen P, An Z, Chen Y. Nano Res, 2018, 11: 1905-1916 CrossRef Google Scholar

[101] Lu Z, Wang J, Huang S, Hou Y, Li Y, Zhao Y, Mu S, Zhang J, Zhao Y. Nano Energy, 2017, 42: 334-340 CrossRef Google Scholar

[102] Shen J, Wu H, Sun W, Qiao J, Cai H, Wang Z, Sun K. Chem Eng J, 2019, 358: 340-350 CrossRef Google Scholar

[103] Chen S, Cheng J, Ma L, Zhou S, Xu X, Zhi C, Zhang W, Zhi L, Zapien JA. Nanoscale, 2018, 10: 10412-10419 CrossRef PubMed Google Scholar

[104] Torres Galvis HM, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP. Science, 2012, 335: 835-838 CrossRef PubMed ADS Google Scholar

[105] Ross MB, Dinh CT, Li Y, Kim D, De Luna P, Sargent EH, Yang P. J Am Chem Soc, 2017, 139: 9359-9363 CrossRef PubMed Google Scholar

[106] Yang Y, Yang X, Liang L, Gao Y, Cheng H, Li X, Zou M, Ma R, Yuan Q, Duan X. Science, 2019, 364: 1057-1062 CrossRef PubMed ADS Google Scholar

[107] Xu J, Liu C, Hsu PC, Zhao J, Wu T, Tang J, Liu K, Cui Y. Nat Commun, 2019, 10: 2440 CrossRef PubMed ADS Google Scholar

[108] Wan S, Wan H, Bi H, Zhu J, He L, Yin K, Su S, Sun L. Nanoscale, 2018, 10: 17015-17020 CrossRef PubMed Google Scholar

[109] Lai H, Wu Q, Zhao J, Shang L, Li H, Che R, Lyu Z, Xiong J, Yang L, Wang X, Hu Z. Energy Environ Sci, 2016, 9: 2053-2060 CrossRef Google Scholar

[110] Shang L, Li H, Lai H, Li D, Wu Q, Yang L, Wang X, Hu Z. J Power Sources, 2016, 326: 279-284 CrossRef ADS Google Scholar

  • Figure 1

    The 3D mesostructured electrode combining the large SSA, the fully interconnected hierarchical porosity, and the continuous conductive scaffold. Such an architecture is favorable for efficient charge delivery throughout the entire electrode [3] (color online).

  • Figure 2

    Publications each year for typical nanocarbons searched by Web of Science with keywords in TITLE. Inset shows the data for carbon nanocag* or carbon hollow spher* or carbon hollow nanospher* or carbon nanocapsul* (up to March 27 2020) (color online).

  • Figure 3

    Schematic mesostructures with interconnected pores and continuous conductive scaffold for the smooth mass/charge transfer (a, b), and the FEM simulation results (c, d) [13] (color online).

  • Figure 4

    Comparison of mesostructured hierarchical carbon nanocages (hCNC) and randomly packed carbon nanocages (rpCNC). (a) Scanning electron microscope (SEM) image of mesostructured basic magnesium carbonate. (b) SEM image of the mesostructured carbon nanocages. (c–f) Typical SEM and transmission electron microscope (TEM) images. Arrows in (f) indicate the broken fringes. Regions I and II represent the spaces inside the nanocages and interspace between the nanocages, respectively. (g) Schematic structural characters of the hCNC and rpCNC at multiscales. (h, i) N2 adsorption/desorption isotherms and the corresponding pore size distributions of hCNC and rpCNC [13] (color online).

  • Figure 5

    Other synthetic routes to mesostructured carbon-based nanocages. (a) With PMMA templates [44]; (b) with bimodal polymer-silica colloids templates [45]; (c) by a spray drying method [46] (color online).

  • Figure 6

    Schematic strategies for wide applications of mesostructured carbon-based nanocages (color online).

  • Figure 7

    Supercapacitive performances of mesostructured carbon-based nanocages. (a) Enhancing the capacitive performances by N-doping [34]. (i) Dynamic water contact angle measurement; (ii) Nyquist plots; (iii) area-normalized capacitances at different current densities. (b) Enhancing the volumetric performances by capillary compression [35]. (i) Preparation procedures; (ii) volumetric capacitances at different current densities in 6 M KOH; (iii) Ragone plots of the electrode stack in EMIMBF4 (color online).

  • Figure 8

    Encapsulating and supporting metal oxides for LIBs [68]. (a) Schematic preparation route. (b) Tilting TEM images of SnO2@hCNC. (c) Rate capabilities of different SnO2-based samples in LIBs. (d) Nyquist plots of SnO2@hCNC and SnO2/hCNC before cycling and after different cycles (color online).

  • Figure 9

    Strategies for improving the Li-S battery performance with carbon-based nanocages. (a) Illustration of facilitated charge transfer and conversion reactions [46]. (b) S@G-GCNs with suppressed shuttle effect and volume swelling/shrinkage, and enhanced charge transfer kinetics [50]. (c, d) Combined electrocatalysis and adsorption effects of N-doped carbons and the calculated free energies in the conversion reactions [36]. (e) Schematic illustration of the contribution of high conductive carbon nanocages modified separators [75]. Upper: a routine polypropylene (PP) separator; bottom: a carbon nanocage-modified separator (color online).

  • Figure 10

    PGM or NPM-based catalysts constructed with the hierarchical carbon-based nanocages. (a–d) Single-site catalysts of Pt (a), Pd (b), Au (c) and Ir (d) [40]. (e) Pt nanoparticles on hNCNCs [80]. (f) Pt nanoparticles filled inside hNCNCs [37]. (g) α-Fe2O3/Fe3O4/hNCNCs electrocatalysts with abundant nano-heterointerfaces [81] (color online).

  • Figure 11

    Construction of Pt SSCs with hierarchical carbon-based nanocages [40]. (a, b) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images of Pt1/hNCNCs (a) and Pt/hCNCs (b). (c) Six typical configurations of [PtCl6]2– on different supports and corresponding calculated free energies. 1, graphene sheet. 2, graphitic mono-layer with a micropore of 0.6 nm. 3, graphitic mono-layer with the micropore decorated by two py-N atoms. 4, graphitic bi-layer with a micropore of 0.6 nm. 5, graphitic bi-layer with the micropore decorated by one py-N atom. 6, graphitic bi-layer with the micropore decorated by two py-N atoms. (d) Overpotentials at 10 mA cm–2 and mass activities at 20 mV (vs. RHE) of the series of catalysts in 0.5 M H2SO4 solution. The data for Pt/hCNCs and commercial Pt/C (20 wt% Pt) are presented for comparison. (e) Polarization curves of Pt1/hNCNCs, Pt/hCNCs and commercial Pt/C before and after 5,000 and 10,000 CV scans (color online).

  • Figure 12

    Mechanism and strategy for stabilizing the Fe-based active phase of FTO catalysts and the resulting catalytic performance [41]. (a, b) In situ mass spectroscopic examination of iron carbonyls (a) and DFT simulation on its formation via the carbonylation of iron species (b). (c, d) Evolutions of morphology and particle size distribution (c) and selectivity (d) of the 35Fe/hNCNC-3 catalyst. Note: The N content in hNCNC-1, -2 and -3 is 3.0 at%,8.1 at% and 12.0 at%, respectively (color online).