the National Natural Science Foundation of China(51832008,51672281,51972309)
This work was supported by the National Natural Science Foundation of China (51832008, 51672281, 51972309), and the Youth Innovation Promotion Association of CAS (2015025).
The authors declare no conflict of interest.
The supporting information is available online at
[1] Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC. Nature, 1999, 402: 898 CrossRef ADS Google Scholar
[2] Cardona CM, Elliott B, Echegoyen L. J Am Chem Soc, 2006, 128: 6480-6485 CrossRef PubMed Google Scholar
[3] Li T, Murphy S, Kiselev B, Bakshi KS, Zhang J, Eltahir A, Zhang Y, Chen Y, Zhu J, Davis RM, Madsen LA, Morris JR, Karolyi DR, LaConte SM, Sheng Z, Dorn HC. J Am Chem Soc, 2015, 137: 7881-7888 CrossRef PubMed Google Scholar
[4] Ross RB, Cardona CM, Guldi DM, Sankaranarayanan SG, Reese MO, Kopidakis N, Peet J, Walker B, Bazan GC, Van Keuren E, Holloway BC, Drees M. Nat Mater, 2009, 8: 208-212 CrossRef PubMed ADS Google Scholar
[5] Zhang J, Stevenson S, Dorn HC. Acc Chem Res, 2013, 46: 1548-1557 CrossRef PubMed Google Scholar
[6] Rincón-García L, Ismael AK, Evangeli C, Grace I, Rubio-Bollinger G, Porfyrakis K, Agraït N, Lambert CJ. Nat Mater, 2016, 15: 289-293 CrossRef PubMed ADS arXiv Google Scholar
[7] Toth K, Molloy JK, Matta M, Heinrich B, Guillon D, Bergamini G, Zerbetto F, Donnio B, Ceroni P, Felder-Flesch D. Angew Chem Int Ed, 2013, 52: 12303-12307 CrossRef PubMed Google Scholar
[8] Zalibera M, Krylov DS, Karagiannis D, Will PA, Ziegs F, Schiemenz S, Lubitz W, Reineke S, Savitsky A, Popov AA. Angew Chem Int Ed, 2018, 57: 277-281 CrossRef PubMed Google Scholar
[9] Han Z, Wu XH, Roelle S, Chen CH, Schiemann WP, Lu ZR. Nat Commun, 2017, 8: 692 CrossRef Google Scholar
[10] Popov AA, Yang S, Dunsch L. Chem Rev, 2013, 113: 5989-6113 CrossRef PubMed Google Scholar
[11] Dunsch L, Krause M, Noack J, Georgi P. J Phys Chem Solids, 2004, 65: 309-315 CrossRef ADS Google Scholar
[12] Stevenson S, Mackey MA, Thompson MC, Coumbe HL, Madasu PK, Coumbe CE, Phillips JP. Chem Commun, 2007, : 4263 CrossRef PubMed Google Scholar
[13] Yang S, Zhang L, Zhang W, Dunsch L. Chem Eur J, 2010, 16: 12398-12405 CrossRef PubMed Google Scholar
[14] Jiao M, Zhang W, Xu Y, Wei T, Chen C, Liu F, Yang S. Chem Eur J, 2012, 18: 2666-2673 CrossRef PubMed Google Scholar
[15] Liu F, Guan J, Wei T, Wang S, Jiao M, Yang S. Inorg Chem, 2013, 52: 3814-3822 CrossRef PubMed Google Scholar
[16] Fix R, Gordon RG, Hoffman DM. Chem Mater, 1991, 3: 1138-1148 CrossRef Google Scholar
[17]
Lind H, Pilemalm R, Rogstrom L, Tasnadi F, Ghafoor N, Forsen R, Johnson LJS, Johansson-Joesaar MP, Oden M, Abrikosov IA.
[18] Stevenson S, Thompson MC, Coumbe HL, Mackey MA, Coumbe CE, Phillips JP. J Am Chem Soc, 2007, 129: 16257-16262 CrossRef PubMed Google Scholar
Scheme 1
Technical scheme of the apparatus of synthesizing metallofullerene M3N@C80 (M=Y, Sc, Gd) by arc-discharge method (color online).
Figure 1
(a) First-step HPLC chromatograms of Y-based metallofullerenes extracts obtained from different nitrogen sources (20 mm
Figure 2
(a) First-step HPLC chromatograms of Sc-based metallofullerenes extracts obtained from different nitrogen sources
Figure 3
(a) First-step HPLC chromatograms of Gd-based metallofullerenes extracts obtained from different nitrogen sources
Figure 4
(a) HPLC chromatograms of metallofullerene extracts obtained from discharging of mixture of Y/Ni2 alloy and ZrC (0%, 10%, 20%, 30%, 40% weight ratio of metal alloy, respectively) under an atmosphere of 20 Torr N2 and
Figure 5
(a) MALDI-TOF mass spectra of the fraction containing Y2@C79N for the two synthetic methods; (b) EPR spectra of the fraction containing Y2@C79N for two synthetic methods (toluene solution, room temperature); (c) MALDI-TOF mass spectra of the fraction containing Gd2@C79N for the two synthetic methods (color online).