logo

Zirconium nitride as a highly efficient nitrogen source to synthesize the metal nitride clusterfullerenes

More info
  • ReceivedJun 30, 2020
  • AcceptedAug 4, 2020
  • PublishedOct 29, 2020

Abstract


Funded by

the National Natural Science Foundation of China(51832008,51672281,51972309)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51832008, 51672281, 51972309), and the Youth Innovation Promotion Association of CAS (2015025).


Interest statement

The authors declare no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC. Nature, 1999, 402: 898 CrossRef ADS Google Scholar

[2] Cardona CM, Elliott B, Echegoyen L. J Am Chem Soc, 2006, 128: 6480-6485 CrossRef PubMed Google Scholar

[3] Li T, Murphy S, Kiselev B, Bakshi KS, Zhang J, Eltahir A, Zhang Y, Chen Y, Zhu J, Davis RM, Madsen LA, Morris JR, Karolyi DR, LaConte SM, Sheng Z, Dorn HC. J Am Chem Soc, 2015, 137: 7881-7888 CrossRef PubMed Google Scholar

[4] Ross RB, Cardona CM, Guldi DM, Sankaranarayanan SG, Reese MO, Kopidakis N, Peet J, Walker B, Bazan GC, Van Keuren E, Holloway BC, Drees M. Nat Mater, 2009, 8: 208-212 CrossRef PubMed ADS Google Scholar

[5] Zhang J, Stevenson S, Dorn HC. Acc Chem Res, 2013, 46: 1548-1557 CrossRef PubMed Google Scholar

[6] Rincón-García L, Ismael AK, Evangeli C, Grace I, Rubio-Bollinger G, Porfyrakis K, Agraït N, Lambert CJ. Nat Mater, 2016, 15: 289-293 CrossRef PubMed ADS arXiv Google Scholar

[7] Toth K, Molloy JK, Matta M, Heinrich B, Guillon D, Bergamini G, Zerbetto F, Donnio B, Ceroni P, Felder-Flesch D. Angew Chem Int Ed, 2013, 52: 12303-12307 CrossRef PubMed Google Scholar

[8] Zalibera M, Krylov DS, Karagiannis D, Will PA, Ziegs F, Schiemenz S, Lubitz W, Reineke S, Savitsky A, Popov AA. Angew Chem Int Ed, 2018, 57: 277-281 CrossRef PubMed Google Scholar

[9] Han Z, Wu XH, Roelle S, Chen CH, Schiemann WP, Lu ZR. Nat Commun, 2017, 8: 692 CrossRef Google Scholar

[10] Popov AA, Yang S, Dunsch L. Chem Rev, 2013, 113: 5989-6113 CrossRef PubMed Google Scholar

[11] Dunsch L, Krause M, Noack J, Georgi P. J Phys Chem Solids, 2004, 65: 309-315 CrossRef ADS Google Scholar

[12] Stevenson S, Mackey MA, Thompson MC, Coumbe HL, Madasu PK, Coumbe CE, Phillips JP. Chem Commun, 2007, : 4263 CrossRef PubMed Google Scholar

[13] Yang S, Zhang L, Zhang W, Dunsch L. Chem Eur J, 2010, 16: 12398-12405 CrossRef PubMed Google Scholar

[14] Jiao M, Zhang W, Xu Y, Wei T, Chen C, Liu F, Yang S. Chem Eur J, 2012, 18: 2666-2673 CrossRef PubMed Google Scholar

[15] Liu F, Guan J, Wei T, Wang S, Jiao M, Yang S. Inorg Chem, 2013, 52: 3814-3822 CrossRef PubMed Google Scholar

[16] Fix R, Gordon RG, Hoffman DM. Chem Mater, 1991, 3: 1138-1148 CrossRef Google Scholar

[17] Lind H, Pilemalm R, Rogstrom L, Tasnadi F, Ghafoor N, Forsen R, Johnson LJS, Johansson-Joesaar MP, Oden M, Abrikosov IA. AIP Adv, 2014, 4: 127147. Google Scholar

[18] Stevenson S, Thompson MC, Coumbe HL, Mackey MA, Coumbe CE, Phillips JP. J Am Chem Soc, 2007, 129: 16257-16262 CrossRef PubMed Google Scholar

  • Scheme 1

    Technical scheme of the apparatus of synthesizing metallofullerene M3N@C80 (M=Y, Sc, Gd) by arc-discharge method (color online).

  • Figure 1

    (a) First-step HPLC chromatograms of Y-based metallofullerenes extracts obtained from different nitrogen sources (20 mm×250 mm Buckyprep column with a 24 mL injection; flow rate 15 mL/min; toluene as eluent). Peaks marked by red dots contain Y3N@C80. (b) Second-step HPLC chromatograms of the isolated parts containing Y3N@C80 (20 mm×250 mm Buckyprep-M column with a 20 mL injection; flow rate 12 mL/min; toluene as eluent). (c) MALDI-TOF mass spectrum of the Y3N@C80 peak in the second-step. (d) Comparison of HPLC peak areas of Y3N@C80 in the second-step with a bar chart (color online).

  • Figure 2

    (a) First-step HPLC chromatograms of Sc-based metallofullerenes extracts obtained from different nitrogen sources (20 mm×250 mm Buckyprep column with a 24 mL injection; flow rate 15.0 mL/min; toluene as eluent). Marked fraction contain Sc3N@C80. (b) Second-step HPLC chromatograms of the isolated parts containing Sc3N@C80 (20 mm×250 mm Buckyprep-M column; injection volume 20 mL; flow rate 12.0 mL/min; toluene as eluent). (c) MALDI-TOF mass spectrum of the Sc3N@C80 peak in the second-step. (d) Comparison of HPLC peak areas of Sc3N@C80 in the second-step with a bar chart (color online).

  • Figure 3

    (a) First-step HPLC chromatograms of Gd-based metallofullerenes extracts obtained from different nitrogen sources (20 mm×250 mm Buckyprep column; injection volume 24 mL; flow rate 15.0 mL/min; toluene as eluent). Marked fraction contains Gd3N@C80. (b) Second-step HPLC chromatograms of the isolated parts containing Gd3N@C80 (20 mm×250 mm Buckyprep-M column with a 20 mL injection; flow rate 12.0 mL/min; toluene as eluent). (c) MALDI-TOF mass spectrum of the Gd3N@C80 peak in the second-step. (d) Comparison of HPLC peak areas of Gd3N@C80 in the second-step with a bar chart (color online).

  • Figure 4

    (a) HPLC chromatograms of metallofullerene extracts obtained from discharging of mixture of Y/Ni2 alloy and ZrC (0%, 10%, 20%, 30%, 40% weight ratio of metal alloy, respectively) under an atmosphere of 20 Torr N2 and 180 Torr He (20 mm×250 mm Buckyprep column; injection volume 24 mL; flow rate 15.0 mL/min; toluene as eluent). Marked fraction contains Y3N@C80. (b) MALDI-TOF mass spectrum of the Y3N@C80 peak in the second-step. (c) Comparison of HPLC peak areas of Y3N@C80 in the second-step with a bar chart (color online).

  • Figure 5

    (a) MALDI-TOF mass spectra of the fraction containing Y2@C79N for the two synthetic methods; (b) EPR spectra of the fraction containing Y2@C79N for two synthetic methods (toluene solution, room temperature); (c) MALDI-TOF mass spectra of the fraction containing Gd2@C79N for the two synthetic methods (color online).