logo

N-heterocyclic carbene-catalyzed radical reactions

More info
  • ReceivedJul 9, 2020
  • AcceptedAug 14, 2020
  • PublishedSep 29, 2020

Abstract

While N-heterocyclic carbene (NHC) catalyzed electron-pair-transfer processes have been developed into an important tool for synthetically important bond formations during the past decades, the corresponding radical reactions via NHC catalysis have only received growing attention in the past six years. Taking into account the advantages NHC-catalyzed radical reactions might bring, such as creating new activation modes that were previously unobtainable, it is worthwhile to provide a conceptual understanding of this emerging area. Therefore, herein we give an overview of NHC-catalyzed radical reactions via different synthetic techniques.


Funded by

the University of Chinese Academy of Sciences.


Acknowledgment

This work was supported by the University of Chinese Academy of Sciences.


Interest statement

The authors declare no conflict of interest.


Contributions statement

These authors contributed equally to this work.


References

[1] List B, Lerner RA, Barbas CF, Ahrendt KA, Borths CJ, MacMillan DWC, Bui T, Barbas Iii CF. J Am Chem Soc, 2000, 122: 2395-2396 CrossRef Google Scholar

[2] Enders D, Grondal C, Hüttl MRM, Volla CMR, Atodiresei I, Rueping M, Chauhan P, Mahajan S, Enders D, Dalko PI, Moisan L, Melchiorre P, Marigo M, Carlone A, Bartoli G, Bertelsen S, Jørgensen KA. Angew Chem Int Ed, 2007, 46: 1570-1581 CrossRef PubMed Google Scholar

[3] Enders D, Balensiefer T, Enders D, Niemeier O, Henseler A, Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V, Bugaut X, Glorius F, Cohen DT, Scheidt KA, Douglas J, Churchill G, Smith A, Grossmann A, Enders D, Vora HU, Wheeler P, Rovis T, Bode JW, Chen XY, Ye S, De Sarkar S, Biswas A, Samanta RC, Studer A, Ryan SJ, Candish L, Lupton DW, Hopkinson MN, Richter C, Schedler M, Glorius F, Mahatthananchai J, Bode JW, Flanigan DM, F, White NA, Rovis T, Menon RS, Biju AT, Nair V, Wang MH, Scheidt KA, Reyes E, Uria U, Carrillo L, Vicario J, Zhang C, Hooper JF, Lupton DW, Chen XY, Liu Q, Chauhan P, Enders D, Mukherjee S, Biju AT, Murauski KJR, Jaworski AA, Scheidt KA, Mondal S, Yetra SR, Mukherjee S, Biju AT, Chen XY, Gao ZH, Ye S, Sathyanarayana A, Nakamura S, Hisano K, Tsutsumi O, Srinivas K, Prabusankar G. Acc Chem Res, 2004, 37: 534-541 CrossRef Google Scholar

[4] Sheehan JC, Hunneman DH, Stetter H, Enders D, Breuer K, Runsink J, Teles JH. Ukai T, Tanaka R, Dokawa T. J Pharm Soc Jpn, 1943, 63: 296–300. Google Scholar

[5] Burstein C, Glorius F, Sohn SS, Rosen EL, Bode JW. Angew Chem Int Ed, 2004, 43: 6205-6208 CrossRef PubMed Google Scholar

[6] Reynolds NT, Read de Alaniz J, Rovis T, He M, Bode JW, Zhang YR, He L, Wu X, Shao PL, Ye S, Duguet N, Campbell CD, Slawin AMZ, Smith AD. J Am Chem Soc, 2004, 126: 9518-9519 CrossRef PubMed Google Scholar

[7] Shen LT, Shao PL, Ye S, Mo J, Chen X, Chi YR. Adv Synth Catal, 2011, 353: 1943-1948 CrossRef Google Scholar

[8] Maki BE, Chan A, Phillips EM, Scheidt KA, De Sarkar S, Studer A, Castells J, Llitjos H, Moreno-Mañas M, Zeitler K. Org Lett, 2007, 9: 371-374 CrossRef PubMed Google Scholar

[9] Chiu CC, Pan K, Jordan F, Chabrière E, Vernède X, Guigliarelli B, Charon MH, Hatchikian EC, Fontecilla-Camps JC. J Am Chem Soc, 1995, 117: 7027-7028 CrossRef Google Scholar

[10] Zhao K, Enders D, Song R, Chi YR, Ishii T, Nagao K, Ohmiya H, Liu Q, Chen XY. Angew Chem Int Ed, 2017, 56: 3754-3756 CrossRef PubMed Google Scholar

[11] Nakanishi I, Itoh S, Nakanishi I, Itoh S, Fukuzumi S, Nakanishi I, Itoh S, Suenobu T, Fukuzumi S, Nakanishi I, Itoh S, Suenobu T, Inoue H, Fukuzumi S, Ragsdale SW, Mansoorabadi SO, Seravalli J, Furdui C, Krymov V, Gerfen GJ, Begley TP, Melnick J, Ragsdale SW, Reed GH, Kluger R, Tittmann K. Chem Commun, 1997, : 1927-1928 CrossRef Google Scholar

[12] Guin J, De Sarkar S, Grimme S, Studer A. Angew Chem Int Ed, 2008, 47: 8727-8730 CrossRef PubMed Google Scholar

[13] Zhao J, Mück-Lichtenfeld C, Studer A. Adv Synth Catal, 2013, 355: 1098-1106 CrossRef Google Scholar

[14] Du Y, Wang Y, Li X, Shao Y, Li G, Webster RD, Chi YR. Org Lett, 2014, 16: 5678-5681 CrossRef PubMed Google Scholar

[15] Li BS, Wang Y, Proctor RSJ, Zhang Y, Webster RD, Yang S, Song B, Chi YR, Wang Y, Du Y, Huang X, Wu X, Zhang Y, Yang S, Chi YR. Nat Commun, 2016, 7: 12933 CrossRef PubMed ADS Google Scholar

[16] White NA, Rovis T, Zhang Y, Du Y, Huang Z, Xu J, Wu X, Wang Y, Wang M, Yang S, Webster RD, Chi YR. J Am Chem Soc, 2014, 136: 14674-14677 CrossRef PubMed Google Scholar

[17] Wang H, Wang Y, Chen X, Mou C, Yu S, Chai H, Jin Z, Chi YR. Org Lett, 2019, 21: 7440-7444 CrossRef PubMed Google Scholar

[18] Yang W, Hu W, Dong X, Li X, Sun J. Angew Chem Int Ed, 2016, 55: 15783-15786 CrossRef PubMed Google Scholar

[19] White NA, Rovis T. J Am Chem Soc, 2015, 137: 10112-10115 CrossRef PubMed Google Scholar

[20] Chen XY, Chen KQ, Sun DQ, Ye S. Chem Sci, 2017, 8: 1936-1941 CrossRef PubMed Google Scholar

[21] Mukherjee S, Joseph S, Bhunia A, Gonnade RG, Yetra SR, Biju AT, Dugal-Tessier J, O’Bryan EA, Schroeder TBH, Cohen DT, Scheidt KA. Org Biomol Chem, 2017, 15: 2013-2019 CrossRef PubMed Google Scholar

[22] Song ZY, Chen KQ, Chen XY, Ye S. J Org Chem, 2018, 83: 2966-2970 CrossRef PubMed Google Scholar

[23] Wu X, Zhang Y, Wang Y, Ke J, Jeret M, Reddi RN, Yang S, Song BA, Chi YR. Angew Chem Int Ed, 2017, 56: 2942-2946 CrossRef PubMed Google Scholar

[24] Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC. Nat Rev Chem, 2017, 1: 52-70 CrossRef Google Scholar

[25] Ishii T, Kakeno Y, Nagao K, Ohmiya H. J Am Chem Soc, 2019, 141: 3854-3858 CrossRef PubMed Google Scholar

[26] Ishii T, Ota K, Nagao K, Ohmiya H, Ota K, Nagao K, Ohmiya H. J Am Chem Soc, 2019, 141: 14073-14077 CrossRef PubMed Google Scholar

[27] Zhang B, Peng Q, Guo D, Wang J. Org Lett, 2020, 22: 443-447 CrossRef PubMed Google Scholar

[28] Li JL, Liu YQ, Zou WL, Zeng R, Zhang X, Liu Y, Han B, He Y, Leng HJ, Li QZ. Angew Chem Int Ed, 2020, 59: 1863-1870 CrossRef PubMed Google Scholar

[29] Kim I, Im H, Lee H, Hong S. Chem Sci, 2020, 11: 3192-3197 CrossRef Google Scholar

[30] Yoon TP, Ischay MA, Du J, Narayanam JMR, Stephenson CRJ, Prier CK, Rankic DA, MacMillan DWC, Chen JR, Hu XQ, Lu LQ, Xiao WJ, Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC, Silvi M, Melchiorre P, Zou YQ, Hörmann FM, Bach T, Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ, Kancherla R, Muralirajan K, Sagadevan A, Rueping M, McAtee RC, McClain EJ, Stephenson CRJ, Milligan JA, Phelan JP, Badir SO, Molander GA, Wei Y, Zhou QQ, Tan F, Lu LQ, Xiao WJ, Zhou QQ, Zou YQ, Lu LQ, Xiao WJ, Badir SO, Molander GA, Yu XY, Zhao QQ, Chen J, Xiao WJ, Chen JR. Nat Chem, 2010, 2: 527-532 CrossRef PubMed ADS Google Scholar

[31] DiRocco DA, Rovis T. J Am Chem Soc, 2012, 134: 8094-8097 CrossRef PubMed Google Scholar

[32] Dai L, Xia ZH, Gao YY, Gao ZH, Ye S, Dai L, Ye S. Angew Chem Int Ed, 2019, 58: 18124-18130 CrossRef PubMed Google Scholar

[33] Yoshioka E, Inoue M, Nagoshi Y, Kobayashi A, Mizobuchi R, Kawashima A, Kohtani S, Miyabe H. J Org Chem, 2018, 83: 8962-8970 CrossRef PubMed Google Scholar

[34] Xia ZH, Dai L, Gao ZH, Ye S. Chem Commun, 2020, 56: 1525-1528 CrossRef PubMed Google Scholar

[35] Davies AV, Fitzpatrick KP, Betori RC, Scheidt KA. Angew Chem Int Ed, 2020, 59: 9143-9148 CrossRef PubMed Google Scholar

[36] Mavroskoufis A, Rajes K, Golz P, Agrawal A, Ruß V, Götze JP, Hopkinson MN. Angew Chem Int Ed, 2020, 59: 3190-3194 CrossRef PubMed Google Scholar

[37] Gao ZH, Xia Z‐, Dai L, Ye S. Adv Synth Catal, 2020, 362: 1819-1824 CrossRef Google Scholar

[38] Wang C, Wang Z, Yang J, Shi SH, Hui XP. Org Lett, 2020, 22: 4440-4443 CrossRef PubMed Google Scholar

[39] Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230-13319 CrossRef PubMed Google Scholar

[40] Finney EE, Ogawa KA, Boydston AJ. J Am Chem Soc, 2012, 134: 12374-12377 CrossRef PubMed Google Scholar

[41] Ogawa KA, Boydston AJ. Org Lett, 2014, 16: 1928-1931 CrossRef PubMed Google Scholar

[42] Green RA, Pletcher D, Leach SG, Brown RCD. Org Lett, 2016, 18: 1198-1201 CrossRef PubMed Google Scholar