logo

Porous polymeric ligand promoted copper-catalyzed C-N coupling of (hetero)aryl chlorides under visible-light irradiation

More info
  • ReceivedJul 13, 2020
  • AcceptedAug 25, 2020
  • PublishedOct 29, 2020

Abstract

A porous polymeric ligand (PPL) has been synthesized and complexed with copper to generate a heterogeneous catalyst (Cu@PPL) that has facilitated the efficient C-N coupling with various (hetero)aryl chlorides under mild conditions of visible-light irradiation at 80 °C (58 examples, up to 99% yields). This method could be applied to both aqueous ammonia and substituted amines, and is compatible to a variety of functional groups and heterocycles, as well as allows tandem C-N couplings with conjunctive dihalides. Furthermore, the heterogeneous characteristic of Cu@PPL has enabled a straightforward catalyst separation in multiple times of recycling with negligible catalytic efficiency loss by simple filtration, affording reaction mixtures containing less than 1 ppm of Cu residue.


Funded by

the National Natural Science Foundation of China(21704016,21971044)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21704016, 21971044).


Interest statement

The authors declare no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Horton DA, Bourne GT, Smythe ML. Chem Rev, 2003, 103: 893-930 CrossRef PubMed Google Scholar

[2] Cooper TWJ, Campbell IB, Macdonald SJF. Angew Chem Int Ed, 2010, 49: 8082-8091 CrossRef PubMed Google Scholar

[3] Devendar P, Qu RY, Kang WM, He B, Yang GF. J Agric Food Chem, 2018, 66: 8914-8934 CrossRef PubMed Google Scholar

[4] Mosrin M, Knochel P. Chem Eur J, 2009, 15: 1468-1477 CrossRef PubMed Google Scholar

[5] Evano G, Blanchard N, Toumi M. Chem Rev, 2008, 108: 3054-3131 CrossRef PubMed Google Scholar

[6] Mari M, Bartoccini F, Piersanti G. J Org Chem, 2013, 78: 7727-7734 CrossRef PubMed Google Scholar

[7] Eelkema R, Anderson HL. Macromolecules, 2008, 41: 9930-9933 CrossRef ADS Google Scholar

[8] Ruiz-Castillo P, Buchwald SL. Chem Rev, 2016, 116: 12564-12649 CrossRef PubMed Google Scholar

[9] Surry DS, Buchwald SL. Angew Chem Int Ed, 2008, 47: 6338-6361 CrossRef PubMed Google Scholar

[10] Vo GD, Hartwig JF. J Am Chem Soc, 2009, 131: 11049-11061 CrossRef PubMed Google Scholar

[11] Ullmann F. Ber Dtsch Chem Ges, 1903, 36: 2382-2384 CrossRef Google Scholar

[12] Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem Soc Rev, 2014, 43: 3525-3550 CrossRef PubMed Google Scholar

[13] Senra JD, Aguiar LCS, Simas ABC. Curr Org Synth, 2011, 8: 53–78. Google Scholar

[14] Lipshutz BH. Chem, 2018, 4: 2004-2007 CrossRef Google Scholar

[15] Dery S, Kim S, Haddad D, Cossaro A, Verdini A, Floreano L, Toste FD, Gross E. Chem Sci, 2018, 9: 6523-6531 CrossRef PubMed Google Scholar

[16] Ye R, Zhao J, Wickemeyer BB, Toste FD, Somorjai GA. Nat Catal, 2018, 1: 318-325 CrossRef Google Scholar

[17] Li XF, Yu SB, Yang B, Tian J, Wang H, Zhang DW, Liu Y, Li ZT. Sci China Chem, 2018, 61: 830-835 CrossRef Google Scholar

[18] Chen F, Li W, Sahoo B, Kreyenschulte C, Agostini G, Lund H, Junge K, Beller M. Angew Chem Int Ed, 2018, 57: 14488-14492 CrossRef PubMed Google Scholar

[19] Lee JS, Kapustin EA, Pei X, Llopis S, Yaghi OM, Toste FD. Chem, 2020, 6: 142-152 CrossRef PubMed Google Scholar

[20] Handa S, Wang Y, Gallou F, Lipshutz BH. Science, 2015, 349: 1087-1091 CrossRef PubMed ADS Google Scholar

[21] Hirai Y, Uozumi Y. Chem Asian J, 2010, 5: 1788-1795 CrossRef PubMed Google Scholar

[22] Baig RBN, Nadagouda MN, Varma RS. Green Chem, 2014, 16: 4333-4338 CrossRef Google Scholar

[23] Creutz SE, Lotito KJ, Fu GC, Peters JC. Science, 2012, 338: 647-651 CrossRef PubMed ADS Google Scholar

[24] Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science, 2016, 351: 681-684 CrossRef PubMed ADS Google Scholar

[25] Feng Z, Zeng T, Xuan J, Liu Y, Lu L, Xiao WJ. Sci China Chem, 2016, 59: 171-174 CrossRef Google Scholar

[26] Chen Z, Lu F, Yuan F, Sun J, Du L, Li Z, Gao M, Shi R, Lei A. Sci China Chem, 2019, 62: 1497-1500 CrossRef Google Scholar

[27] Miao M, Liao LL, Cao GM, Zhou WJ, Yu DG. Sci China Chem, 2019, 62: 1519-1524 CrossRef Google Scholar

[28] Kibriya G, Ghosh D, Hajra A. Sci China Chem, 2020, 63: 42-46 CrossRef Google Scholar

[29] Ziegler DT, Choi J, Muñoz-Molina JM, Bissember AC, Peters JC, Fu GC. J Am Chem Soc, 2013, 135: 13107-13112 CrossRef PubMed Google Scholar

[30] Fan M, Zhou W, Jiang Y, Ma D. Org Lett, 2015, 17: 5934-5937 CrossRef PubMed Google Scholar

[31] Zhou W, Fan M, Yin J, Jiang Y, Ma D. J Am Chem Soc, 2015, 137: 11942-11945 CrossRef PubMed Google Scholar

[32] Chen Z, Ma D. Org Lett, 2019, 21: 6874-6878 CrossRef PubMed Google Scholar

[33] Kupgan G, Liyana-Arachchi TP, Colina CM. Langmuir, 2017, 33: 11138-11145 CrossRef PubMed Google Scholar

[34] Shen M, Liu H, Yu C, Yin Z, Muzzio M, Li J, Xi Z, Yu Y, Sun S. J Am Chem Soc, 2018, 140: 16460-16463 CrossRef PubMed Google Scholar

[35] Rauws TRM, Maes BUW. Chem Soc Rev, 2012, 41: 2463-2497 CrossRef PubMed Google Scholar

[36] Kolodziej K, Romanowska J, Stawinski J, Boryski J, Dabrowska A, Lipniacki A, Piasek A, Kraszewski A, Sobkowski M. Eur J Medicinal Chem, 2015, 100: 77-88 CrossRef PubMed Google Scholar

[37] Hassan Z, Spuling E, Knoll DM, Lahann J, Bräse S. Chem Soc Rev, 2018, 47: 6947-6963 CrossRef PubMed Google Scholar

[38] Haiduc I. J Coord Chem, 2019, 72: 2805-2903 CrossRef Google Scholar

[39] Fyfe JWB, Seath CP, Watson AJB. Angew Chem Int Ed, 2014, 53: 12077-12080 CrossRef PubMed Google Scholar

[40] Xu L, Zhang S, Li P. Chem Soc Rev, 2015, 44: 8848-8858 CrossRef PubMed Google Scholar

[41] Wang E, Chen M. Chem Sci, 2019, 10: 8331-8337 CrossRef PubMed Google Scholar

[42] Mikhailine AA, Grasa Mannino GA, Colacot TJ. Org Lett, 2018, 20: 2301-2305 CrossRef PubMed Google Scholar

  • Scheme 1

    Cu@L6 Catalyzed C-N Coupling between (Hetero)aryl chlorides and ammonia/amines. Conditions: (hetero)aryl chloride (0.5 mmol), aqueous ammonia (1 mmol) or R–NH2 (0.6 mmol), Cu@L6(0.05 mmol), K3PO4 (0.6 mmol), DMSO (0.5 mL), 80 °C, visible light at 405 nm, 48 h. Isolated yields are based on electrophiles (color online).

  • Figure 1

    Cu-catalyzed C–N bond formation under visible-light irradiation with oxalamide-linked porous polymeric ligand (PPL) (color online).

  • Scheme 2

    Cu@L6 catalyzed tandem C-N coupling of conjunctive dihalides. Conditions: Br–R1–Cl (0.5 mmol), R2–NH2 and R3–NH2 (amine=0.51 mmol; aqueous ammonia=1.0 mmol), Cu@L6 (0.05 mmol), K3PO4(1.2 mmol), DMSO (0.5 mL), visible light at 405 nm. Isolated yields are based on Br–R1–Cl (color online).

  • Figure 2

    Characterization of L6 and Cu@L6. (a, b) FT-IR and UV-Vis spectra; (c) optical images; (d) adsorption (filled symbols) and desorption (empty symbols) isotherms recorded under N2 atmosphere; (e) pore size distribution obtained by NLDFT; (f, g) SEM images of L6 and Cu@L6, respectively; (h, i) HR-TEM images of L6 and Cu@L6, respectively; (j1) STEM image of Cu@L6; (j2–j4) element mapping images of Cu@L6 based on (j1) (color online).

  • Table 1   C–N bond formation between 4-n-butyl-chlorobenzene and aqueous ammonia a)

    Entry

    Ligand

    Lightirradiation

    Temperature(°C)

    Time (h)

    Yield b)

    1

    L1

    No light

    120

    24

    15

    2

    L2

    No light

    120

    24

    32

    3

    L3

    No light

    120

    24

    12

    4

    L4

    No light

    120

    24

    29

    5

    L5

    No light

    120

    24

    18

    6

    L6

    No light

    120

    24

    36

    7

    L6

    White light

    100

    24

    76

    8

    L6

    405 nm

    100

    24

    92

    9

    L6

    405 nm

    80

    48

    >99 (99) c), 82 d)

    10

    L6

    405 nm

    60

    48

    56

    11

    L6

    405 nm

    80

    48

    27–85 e)

    12

    L6

    405 nm

    80

    48

    88 f)

    Conditions: 4-nBu–Ph–Cl (0.5 mmol), aqueous ammonia (1 mmol), Cu@Ligand (0.05 mmol), K3PO4 (0.6 mmol), DMSO (0.5 mL). b) GC yield. c) Isolated yield in parentheses. d) 24 h. e) When DMF, DMAc or tBuOH was used instead of DMSO, yield was 82%, 75% and 27%, respectively; when Cs2CO3, K2CO3 or Na2CO3 was used instead of K3PO4, yield was 85%, 54% and 36%, respectively. f) 5 mol% Cu@L6.

  • Table 2   Recycling experiments of Cu@L6 catalyzed C-N coupling a)

    Run

    Light irradiation

    Time (h)

    GC yield

    Isolated yield

    1

    405 nm

    48

    >99

    >99

    2

    405 nm

    48

    >99

    99

    3

    405 nm

    48

    99

    99

    4

    405 nm

    48

    99

    98

    5

    405 nm

    48

    99

    97

    6

    405 nm

    48

    98

    97

    Conditions: 4-nBu–Ph–Cl (0.5 mmol), aqueous ammonia (1 mmol), Cu@L6 (0.05 mmol), K3PO4 (0.6 mmol), DMSO (0.5 mL), 80 °C.