logo

SCIENCE CHINA Life Sciences, Volume 60 , Issue 12 : 1407-1415(2017) https://doi.org/10.1007/s11427-017-9151-1

Role of microbiota on lung homeostasis and diseases

Jian Wang 1,2,†,*, Fengqi Li 1,†, Zhigang Tian 1,3,*
More info
  • ReceivedMay 4, 2017
  • AcceptedJun 12, 2017
  • PublishedOct 9, 2017

Abstract

The lungs, as a place of gas exchange, are continuously exposed to environmental stimuli, such as allergens, microbes, and pollutants. The development of the culture-independent technique for microbiological analysis, such as 16S rRNA sequencing, has uncovered that the lungs are not sterile and, in fact, colonized by diverse communities of microbiota. The function of intestinal microbiota in modulating mucosal homeostasis and defense has been widely studied; however, the potential function of lung microbiota in regulating immunity and homeostasis has just begun. Increasing evidence indicates the relevance of microbiota to lung homeostasis and disease. In this review, we describe the distribution and composition of microbiota in the respiratory system and discuss the potential function of lung microbiota in both health and acute/chronic lung disease. In addition, we also discuss the recent understanding of the gut-lung axis, because several studies have revealed that the immunological interaction among the gut, the lung, and the microbiota was involved in this issue.


Funded by

Natural Science Foundation of China(31400783,91542000)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (31400783, 91542000).


Interest statement

The author(s) declare that they have no conflict of interest.


References

[1] Alegre M.L., Mannon R.B., Mannon P.J.. The microbiota, the immune system and the allograft. Am J Transplant, 2014, 14: 1236-1248 CrossRef PubMed Google Scholar

[2] Arrieta M.C., Stiemsma L.T., Dimitriu P.A., Thorson L., Russell S., Yurist-Doutsch S., Kuzeljevic B., Gold M.J., Britton H.M., Lefebvre D.L., Subbarao P., Mandhane P., Becker A., McNagny K.M., Sears M.R., Kollmann T., Kollmann T., Mohn W.W., Turvey S.E., Finlay B.B.. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med, 2015, 7: 307ra152-307ra152 CrossRef PubMed Google Scholar

[3] Atarashi K., Tanoue T., Oshima K., Suda W., Nagano Y., Nishikawa H., Fukuda S., Saito T., Narushima S., Hase K., Kim S., Fritz J.V., Wilmes P., Ueha S., Matsushima K., Ohno H., Olle B., Sakaguchi S., Taniguchi T., Morita H., Hattori M., Honda K.. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature, 2013, 500: 232-236 CrossRef PubMed ADS Google Scholar

[4] Bai H., Gao X., Zhao L., Peng Y., Yang J., Qiao S., Zhao H., Wang S., Fan Y.J., Joyee A.G., Yao Z., Yang X.. Respective IL-17A production by γδ T and Th17 cells and its implication in host defense against chlamydial lung infection. Cell Mol Immunol, 2016, : in press doi: 10.1038/cmi.2016.53 CrossRef PubMed Google Scholar

[5] Bassis, C.M., Erb-Downward, J.R., Dickson, R.P., Freeman, C.M., Schmidt, T.M., Young, V.B., Beck, J.M., Curtis, J.L., and Huffnagle, G.B. (2015). Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio 6, e00037. Google Scholar

[6] Beck J.M., Young V.B., Huffnagle G.B.. The microbiome of the lung. Transl Res, 2012, 160: 258-266 CrossRef PubMed Google Scholar

[7] Belkaid Y., Tamoutounour S.. The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol, 2016, 16: 353-366 CrossRef PubMed Google Scholar

[8] Bird, L. (2012). Gut microbiota influences liver disease. Nat Rev Immunol 12, 153. Google Scholar

[9] Brubaker L., Wolfe A.J.. The female urinary microbiota, urinary health and common urinary disorders. Ann Transl Med, 2017, 5: 34-34 CrossRef PubMed Google Scholar

[10] Budden, K.F., Gellatly, S.L., Wood, D.L., Cooper, M.A., Morrison, M., Hugenholtz, P., and Hansbro, P.M. (2017). Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 15, 55–63. Google Scholar

[11] Charlson E.S., Bittinger K., Haas A.R., Fitzgerald A.S., Frank I., Yadav A., Bushman F.D., Collman R.G.. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med, 2011, 184: 957-963 CrossRef PubMed Google Scholar

[12] Chen L.W., Chen P.H., Hsu C.M.. Commensal microflora contribute to host defense against Escherichia coli pneumonia through Toll-like receptors. Shock, 2011, 36: 67-75 CrossRef PubMed Google Scholar

[13] Chung H., Kasper D.L.. Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol, 2010, 22: 455-460 CrossRef PubMed Google Scholar

[14] Collard H.R., Moore B.B., Flaherty K.R., Brown K.K., Kaner R.J., King T.E., Lasky J.A., Loyd J.E., Noth I., Olman M.A., Raghu G., Roman J., Ryu J.H., Zisman D.A., Hunninghake G.W., Colby T.V., Egan J.J., Hansell D.M., Johkoh T., Kaminski N., Kim D.S., Kondoh Y., Lynch D.A., Müller-Quernheim J., Myers J.L., Nicholson A.G., Selman M., Toews G.B., Wells A.U., Martinez F.J., Martinez F.J.. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2007, 176: 636-643 CrossRef PubMed Google Scholar

[15] Cui, L., Morris, A., Huang, L., Beck, J.M., Twigg, H.L., 3rd, von Mutius, E., and Ghedin, E. (2014). The microbiome and the lung. Ann Am Thorac Soc 11 Suppl 4, S227–S232. Google Scholar

[16] Dickson R.P., Erb-Downward J.R., Martinez F.J., Huffnagle G.B.. The microbiome and the respiratory tract. Annu Rev Physiol, 2016, 78: 481-504 CrossRef PubMed Google Scholar

[17] Ege M.J., Mayer M., Normand A.C., Genuneit J., Cookson W.O.C.M., Braun-Fahrländer C., Heederik D., Piarroux R., von Mutius E., von Mutius E.. Exposure to environmental microorganisms and childhood asthma. N Engl J Med, 2011, 364: 701-709 CrossRef PubMed Google Scholar

[18] Folcik V.A., Garofalo M., Coleman J., Donegan J.J., Rabbani E., Suster S., Nuovo A., Magro C.M., Di Leva G., Nuovo G.J.. Idiopathic pulmonary fibrosis is strongly associated with productive infection by herpesvirus saimiri. Mod Pathol, 2014, 27: 851-862 CrossRef PubMed Google Scholar

[19] Gallacher, D.J., and Kotecha, S. (2016). Respiratory microbiome of new-born infants. Front Pediatr 4, 10. Google Scholar

[20] Garcia-Nuñez M., Millares L., Pomares X., Ferrari R., Pérez-Brocal V., Gallego M., Espasa M., Moya A., Monsó E.. Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. J Clin Microbiol, 2014, 52: 4217-4223 CrossRef PubMed Google Scholar

[21] Ghosh S., Hoselton S.A., Asbach S.V., Steffan B.N., Wanjara S.B., Dorsam G.P., Schuh J.M.. B lymphocytes regulate airway granulocytic inflammation and cytokine production in a murine model of fungal allergic asthma. Cell Mol Immunol, 2015, 12: 202-212 CrossRef PubMed Google Scholar

[22] Gill N., Wlodarska M., Finlay B.B.. The future of mucosal immunology: studying an integrated system-wide organ. Nat Immunol, 2010, 11: 558-560 CrossRef PubMed Google Scholar

[23] Glenwright A.J., Pothula K.R., Bhamidimarri S.P., Chorev D.S., Baslé A., Firbank S.J., Zheng H., Robinson C.V., Winterhalter M., Kleinekathöfer U., Bolam D.N., van den Berg B.. Structural basis for nutrient acquisition by dominant members of the human gut microbiota. Nature, 2017, 541: 407-411 CrossRef PubMed ADS Google Scholar

[24] Gollwitzer E.S., Saglani S., Trompette A., Yadava K., Sherburn R., McCoy K.D., Nicod L.P., Lloyd C.M., Marsland B.J.. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med, 2014, 20: 642-647 CrossRef PubMed Google Scholar

[25] Guillot L., Medjane S., Le-Barillec K., Balloy V., Danel C., Chignard M., Si-Tahar M.. Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling pathways. J Biol Chem, 2004, 279: 2712-2718 CrossRef PubMed Google Scholar

[26] Hagner S., Harb H., Zhao M., Stein K., Holst O., Ege M.J., Mayer M., Matthes J., Bauer J., von Mutius E., Renz H., Heine H., Pfefferle P.I., Garn H.. Farm-derived Gram-positive bacterium Staphylococcus sciuri W620 prevents asthma phenotype in HDM- and OVA-exposed mice. Allergy, 2013, 68: 322-329 CrossRef PubMed Google Scholar

[27] Han M.L.K., Zhou Y., Murray S., Tayob N., Noth I., Lama V.N., Moore B.B., White E.S., Flaherty K.R., Huffnagle G.B., Martinez F.J.. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir Med, 2014, 2: 548-556 CrossRef Google Scholar

[28] He Y., Wen Q., Yao F., Xu D., Huang Y., Wang J.. Gut-lung axis: the microbial contributions and clinical implications. Crit Rev Microbiol, 2017, 43: 81-95 CrossRef PubMed Google Scholar

[29] Hilty M., Burke C., Pedro H., Cardenas P., Bush A., Bossley C., Davies J., Ervine A., Poulter L., Pachter L., Moffatt M.F., Cookson W.O.C.. Disordered microbial communities in asthmatic airways. PLoS ONE, 2010, 5: e8578 CrossRef PubMed ADS Google Scholar

[30] Honda K., Littman D.R.. The microbiota in adaptive immune homeostasis and disease. Nature, 2016, 535: 75-84 CrossRef PubMed ADS Google Scholar

[31] Hurley M.N., Ariff A.H.A., Bertenshaw C., Bhatt J., Smyth A.R.. Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis. J Cystic Fibrosis, 2012, 11: 288-292 CrossRef PubMed Google Scholar

[32] Ichinohe T., Pang I.K., Kumamoto Y., Peaper D.R., Ho J.H., Murray T.S., Iwasaki A.. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA, 2011, 108: 5354-5359 CrossRef PubMed ADS Google Scholar

[33] Keely S., Talley N.J., Hansbro P.M.. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol, 2012, 5: 7-18 CrossRef PubMed Google Scholar

[34] Kozakova H., Schwarzer M., Tuckova L., Srutkova D., Czarnowska E., Rosiak I., Hudcovic T., Schabussova I., Hermanova P., Zakostelska Z., Aleksandrzak-Piekarczyk T., Koryszewska-Baginska A., Tlaskalova-Hogenova H., Cukrowska B.. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol, 2016, 13: 251-262 CrossRef PubMed Google Scholar

[35] Lefrancais, E., Ortiz-Munoz, G., Caudrillier, A., Mallavia, B., Liu, F., Sayah, D.M., Thornton, E.E., Headley, M.B., David, T., Coughlin, S.R., et al. (2017). The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544, 105–109. Google Scholar

[36] Li M.O., Flavell R.A.. TGF-β: a master of all T cell trades. Cell, 2008, 134: 392-404 CrossRef PubMed Google Scholar

[37] Liu Y., Marc Rhoads J.. “LOCK”ing up allergic responses with a Polish probiotic. Cell Mol Immunol, 2016, 13: 263-264 CrossRef PubMed Google Scholar

[38] Lloyd C.M., Hessel E.M.. Functions of T cells in asthma: more than just TH2 cells. Nat Rev Immunol, 2010, 10: 838-848 CrossRef PubMed Google Scholar

[39] Lochner M., Bérard M., Sawa S., Hauer S., Gaboriau-Routhiau V., Fernandez T.D., Snel J., Bousso P., Cerf-Bensussan N., Eberl G.. Restricted microbiota and absence of cognate TCR antigen leads to an unbalanced generation of Th17 cells. J Immunol, 2011, 186: 1531-1537 CrossRef PubMed Google Scholar

[40] Lynch S.V.. The lung microbiome and airway disease. Ann ATS, 2016, 13: S462-S465 CrossRef PubMed Google Scholar

[41] Macfarlane G., Blackett K., Nakayama T., Steed H., Macfarlane S.. The gut microbiota in inflammatory bowel disease. Curr Pharmaceut Design, 2009, 15: 1528-1536 CrossRef Google Scholar

[42] Man W.H., de Steenhuijsen Piters W.A.A., Bogaert D.. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Micro, 2017, 15: 259-270 CrossRef PubMed Google Scholar

[43] Marri P.R., Stern D.A., Wright A.L., Billheimer D., Martinez F.D.. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol, 2013, 131: 346-352.e3 CrossRef PubMed Google Scholar

[44] Marsland B.J., Gollwitzer E.S.. Host-microorganism interactions in lung diseases. Nat Rev Immunol, 2014, 14: 827-835 CrossRef PubMed Google Scholar

[45] Matsuoka K., Kanai T.. The gut microbiota and inflammatory bowel disease. Semin Immunopathol, 2015, 37: 47-55 CrossRef PubMed Google Scholar

[46] McDermott, M.R., and Bienenstock, J. (1979). Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol 122, 1892–1898. Google Scholar

[47] Molyneaux P.L., Cox M.J., Willis-Owen S.A.G., Mallia P., Russell K.E., Russell A.M., Murphy E., Johnston S.L., Schwartz D.A., Wells A.U., Cookson W.O.C., Maher T.M., Moffatt M.F.. The Role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2014, 190: 906-913 CrossRef PubMed Google Scholar

[48] Morris A., Beck J.M., Schloss P.D., Campbell T.B., Crothers K., Curtis J.L., Flores S.C., Fontenot A.P., Ghedin E., Huang L., Jablonski K., Kleerup E., Lynch S.V., Sodergren E., Twigg H., Young V.B., Bassis C.M., Venkataraman A., Schmidt T.M., Weinstock G.M., Weinstock G.M.. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am J Respir Crit Care Med, 2013, 187: 1067-1075 CrossRef PubMed Google Scholar

[49] Nakanishi Y., Sato T., Ohteki T.. Commensal Gram-positive bacteria initiates colitis by inducing monocyte/macrophage mobilization. Mucosal Immunol, 2015, 8: 152-160 CrossRef PubMed Google Scholar

[50] Nembrini C., Sichelstiel A., Kisielow J., Kurrer M., Kopf M., Marsland B.J.. Bacterial-induced protection against allergic inflammation through a multicomponent immunoregulatory mechanism. Thorax, 2011, 66: 755-763 CrossRef PubMed Google Scholar

[51] O’Dwyer D.N., Armstrong M.E., Trujillo G., Cooke G., Keane M.P., Fallon P.G., Simpson A.J., Millar A.B., McGrath E.E., Whyte M.K., Hirani N., Hogaboam C.M., Donnelly S.C.. The Toll-like receptor 3 L412F polymorphism and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2013, 188: 1442-1450 CrossRef PubMed Google Scholar

[52] O’Dwyer D.N., Dickson R.P., Moore B.B.. The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol, 2016, 196: 4839-4847 CrossRef PubMed Google Scholar

[53] Ramsey B.W.. Management of pulmonary disease in patients with cystic fibrosis. N Engl J Med, 1996, 335: 179-188 CrossRef PubMed Google Scholar

[54] Remot A., Descamps D., Noordine M.L., Boukadiri A., Mathieu E., Robert V., Riffault S., Lambrecht B., Langella P., Hammad H., Thomas M.. Bacteria isolated from lung modulate asthma susceptibility in mice. ISME J, 2017, 11: 1061-1074 CrossRef PubMed Google Scholar

[55] Rooks M.G., Garrett W.S.. Gut microbiota, metabolites and host immunity. Nat Rev Immunol, 2016, 16: 341-352 CrossRef PubMed Google Scholar

[56] Round J.L., Mazmanian S.K.. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol, 2009, 9: 313-323 CrossRef PubMed Google Scholar

[57] Saeedi P., Salimian J., Ahmadi A., Imani Fooladi A.A.. The transient but not resident (TBNR) microbiome: a Yin Yang model for lung immune system. Inhal Toxicol, 2015, 27: 451-461 CrossRef PubMed Google Scholar

[58] Schleiermacher D., Hoffmann J.C.. Pulmonary abnormalities in inflammatory bowel disease. J Crohn’s Colitis, 2007, 1: 61-69 CrossRef PubMed Google Scholar

[59] Segal, L.N., and Blaser, M.J. (2014). A brave new world: the lung microbiota in an era of change. Ann Am Thorac Soc 11 Suppl 1, S21–S27. Google Scholar

[60] Shaw M.H., Kamada N., Kim Y.G., Núñez G.. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state Th17 cells in the intestine. J Exp Med, 2012, 209: 251-258 CrossRef PubMed Google Scholar

[61] Shekhar S., Peng Y., Wang S., Yang X.. CD103+ lung dendritic cells (LDCs) induce stronger Th1/Th17 immunity to a bacterial lung infection than CD11bhi LDCs. Cell Mol Immunol, 2017, : in press doi: 10.1038/cmi.2016.68 CrossRef PubMed Google Scholar

[62] Siu K.L., Chan C.P., Kok K.H., Chiu-Yat Woo P., Jin D.Y.. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol, 2014, 11: 141-149 CrossRef PubMed Google Scholar

[63] Smith A.L., Fiel S.B., Mayer-Hamblett N., Ramsey B., Burns J.L.. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration. Chest, 2003, 123: 1495-1502 CrossRef Google Scholar

[64] Snelgrove R.J., Godlee A., Hussell T.. Airway immune homeostasis and implications for influenza-induced inflammation. Trends Immunol, 2011, 32: 328-334 CrossRef PubMed Google Scholar

[65] Song X., He X., Li X., Qian Y.. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol, 2016, 13: 418-431 CrossRef PubMed Google Scholar

[66] Stenbit, A.E., and Flume, P.A. (2011). Pulmonary exacerbations in cystic fibrosis. Curr Opin Pulm Med 17, 442–447. Google Scholar

[67] Su C., Lei L., Duan Y., Zhang K.Q., Yang J.. Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol, 2012, 93: 993-1003 CrossRef PubMed Google Scholar

[68] Sze M.A., Abbasi M., Hogg J.C., Sin D.D.. A comparison between droplet digital and quantitative PCR in the analysis of bacterial 16S load in lung tissue samples from control and COPD GOLD 2. PLoS ONE, 2014, 9: e110351 CrossRef PubMed ADS Google Scholar

[69] Tamburini S., Clemente J.C.. Gut microbiota: neonatal gut microbiota induces lung immunity against pneumonia. Nat Rev Gastroenterol Hepatol, 2017, 14: 263-264 CrossRef PubMed Google Scholar

[70] Tan D.B.A., Amran F.S., Teo T.H., Price P., Moodley Y.P.. Levels of CMV-reactive antibodies correlate with the induction of CD28null T cells and systemic inflammation in chronic obstructive pulmonary disease (COPD). Cell Mol Immunol, 2016, 13: 551-553 CrossRef PubMed Google Scholar

[71] Tan D.B.A., Fernandez S., Price P., French M.A., Thompson P.J., Moodley Y.P.. Impaired CTLA-4 responses in COPD are associated with systemic inflammation. Cell Mol Immunol, 2014, 11: 606-608 CrossRef PubMed Google Scholar

[72] Taylor S.L., Wesselingh S., Rogers G.B.. Host-microbiome interactions in acute and chronic respiratory infections. Cell Microbiol, 2016, 18: 652-662 CrossRef PubMed Google Scholar

[73] Thepen T., Kraal G., Holt P.G.. The role of alveolar macrophages in regulation of lung inflammation. Ann New York Acad Sci, 1994, 725: 200-206 CrossRef ADS Google Scholar

[74] Tian Z., Cao X., Chen Y., Lyu Q.. Regional immunity in tissue homeostasis and diseases. Sci China Life Sci, 2016, 59: 1205-1209 CrossRef PubMed Google Scholar

[75] Trompette A., Gollwitzer E.S., Yadava K., Sichelstiel A.K., Sprenger N., Ngom-Bru C., Blanchard C., Junt T., Nicod L.P., Harris N.L., Marsland B.J.. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med, 2014, 20: 159-166 CrossRef PubMed Google Scholar

[76] Vital, M., Harkema, J.R., Rizzo, M., Tiedje, J., and Brandenberger, C. (2015). Alterations of the murine gut microbiome with age and allergic airway disease. J Immunol Res 2015, 892568. Google Scholar

[77] Wang, J., Li, F., Sun, R., Gao, X., Wei, H., Li, L.J., and Tian, Z. (2013). Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages. Nat Commun 4, 2106. Google Scholar

[78] Wang J., Li F., Wei H., Lian Z.X., Sun R., Tian Z.. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J Exp Med, 2014, 211: 2397-2410 CrossRef PubMed Google Scholar

[79] Wang J., Tian Z.. How lung infection leads to gut injury. Oncotarget, 2015, 6: 42394-42395 CrossRef PubMed Google Scholar

[80] Wissinger E., Goulding J., Hussell T.. Immune homeostasis in the respiratory tract and its impact on heterologous infection. Semin Immunol, 2009, 21: 147-155 CrossRef PubMed Google Scholar

[81] Wu D., Hou C., Li Y., Zhao Z., Liu J., Lu X., Shang X., Xin Y.. Analysis of the bacterial community in chronic obstructive pulmonary disease sputum samples by denaturing gradient gel electrophoresis and real-time PCR. BMC Pulm Med, 2014, 14: 179 CrossRef PubMed Google Scholar

[82] Young, R.P., Hopkins, R.J., and Marsland, B. (2016). The gut-liver-lung axis. Modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 54, 161–169. Google Scholar

[83] Zhang Y., Liang C.. Innate recognition of microbial-derived signals in immunity and inflammation. Sci China Life Sci, 2016, 59: 1210-1217 CrossRef PubMed Google Scholar

  • Figure 1

    (Color online) The lung microbiota play roles in lung homeostasis maintenance. A, Similar as intestinal microbiota, lung microbiota might also be recognized by pattern recognition receptors (PRRs) and then promote the polarization of naïve T cells in the lungs from Th2 to Th1 after birth to protect against neonatal asthma and allergy. This issue needs to be determined. B, In neonate’s lungs, the bacterial load increases, and the bacterial phyla shifts from Gammaproteobacteria and Firmicutes towards Bacteroidetes. The changes of the microbiota are associated with the development of Helios-negative Treg cells in the lungs that subsequently inhibit the exaggerated inflammatory response to allergens through to adulthood. C, Staphylococcus aureus (S. aureus), a common microbiota in upper respiratory tract and lung, promote the differentiation of M2 alveolar macrophages then provide protection against lethal inflammation in the lungs caused by influenza infection.

  • Figure 2

    (Color online) The bridge function of microbiota in the gut-lung axis. A, Dysbiosis of the intestinal microbiota is linkage to the pathogenesis and progression of asthma, and depletion or absence of intestinal microbiota leads to impaired immune responses following viral or bacterial respiratory infection. B, Respiratory influenza infection changes the composition of intestinal microbiota and causes intestinal immune injury, and the allergic response in the lungs affects the composition of the intestinal microbiota.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号