References
[1]
Gong J P. Why are double network hydrogels so tough? Soft Matter, 2010, 6: 2583–2590.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gong J P. Why are double network hydrogels so tough? Soft Matter, 2010, 6: 2583–2590&
[2]
Zhao
X.
Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks.
Soft Matter,
2014, 10: 672-687
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks&author=Zhao X&publication_year=2014&journal=Soft Matter&volume=10&pages=672-687
[3]
Long
R,
Hui
C Y.
Fracture toughness of hydrogels: Measurement and interpretation.
Soft Matter,
2016, 12: 8069-8086
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fracture toughness of hydrogels: Measurement and interpretation&author=Long R&author=Hui C Y&publication_year=2016&journal=Soft Matter&volume=12&pages=8069-8086
[4]
Creton
C,
Ciccotti
M.
Fracture and adhesion of soft materials: A review.
Rep Prog Phys,
2016, 79: 046601
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fracture and adhesion of soft materials: A review&author=Creton C&author=Ciccotti M&publication_year=2016&journal=Rep Prog Phys&volume=79&pages=046601
[5]
Bai
R,
Yang
J,
Suo
Z.
Fatigue of hydrogels.
Eur J Mech-A/Solids,
2019, 74: 337-370
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fatigue of hydrogels&author=Bai R&author=Yang J&author=Suo Z&publication_year=2019&journal=Eur J Mech-A/Solids&volume=74&pages=337-370
[6]
Rowley
J A,
Madlambayan
G,
Mooney
D J.
Alginate hydrogels as synthetic extracellular matrix materials.
Biomaterials,
1999, 20: 45-53
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Alginate hydrogels as synthetic extracellular matrix materials&author=Rowley J A&author=Madlambayan G&author=Mooney D J&publication_year=1999&journal=Biomaterials&volume=20&pages=45-53
[7]
Cheng
H,
Yue
K,
Kazemzadeh-Narbat
M, et al.
Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis.
ACS Appl Mater Interfaces,
2017, 9: 11428-11439
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis&author=Cheng H&author=Yue K&author=Kazemzadeh-Narbat M&publication_year=2017&journal=ACS Appl Mater Interfaces&volume=9&pages=11428-11439
[8]
Blacklow
S O,
Li
J,
Freedman
B R, et al.
Bioinspired mechanically active adhesive dressings to accelerate wound closure.
Sci Adv,
2019, 5: eaaw3963
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bioinspired mechanically active adhesive dressings to accelerate wound closure&author=Blacklow S O&author=Li J&author=Freedman B R&publication_year=2019&journal=Sci Adv&volume=5&pages=eaaw3963
[9]
Li
J,
Celiz
A D,
Yang
J, et al.
Tough adhesives for diverse wet surfaces.
Science,
2017, 357: 378-381
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tough adhesives for diverse wet surfaces&author=Li J&author=Celiz A D&author=Yang J&publication_year=2017&journal=Science&volume=357&pages=378-381
[10]
Faxälv
L,
Ekblad
T,
Liedberg
B, et al.
Blood compatibility of photografted hydrogel coatings.
Acta Biomater,
2010, 6: 2599-2608
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Blood compatibility of photografted hydrogel coatings&author=Faxälv L&author=Ekblad T&author=Liedberg B&publication_year=2010&journal=Acta Biomater&volume=6&pages=2599-2608
[11]
Butruk
B,
Trzaskowski
M,
Ciach
T.
Fabrication of biocompatible hydrogel coatings for implantable medical devices using Fenton-type reaction.
Mater Sci Eng-C,
2012, 32: 1601-1609
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fabrication of biocompatible hydrogel coatings for implantable medical devices using Fenton-type reaction&author=Butruk B&author=Trzaskowski M&author=Ciach T&publication_year=2012&journal=Mater Sci Eng-C&volume=32&pages=1601-1609
[12]
Rogers
J A,
Someya
T,
Huang
Y.
Materials and mechanics for stretchable electronics.
Science,
2010, 327: 1603-1607
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Materials and mechanics for stretchable electronics&author=Rogers J A&author=Someya T&author=Huang Y&publication_year=2010&journal=Science&volume=327&pages=1603-1607
[13]
Chortos
A,
Liu
J,
Bao
Z.
Pursuing prosthetic electronic skin.
Nat Mater,
2016, 15: 937-950
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pursuing prosthetic electronic skin&author=Chortos A&author=Liu J&author=Bao Z&publication_year=2016&journal=Nat Mater&volume=15&pages=937-950
[14]
Wirthl
D,
Pichler
R,
Drack
M, et al.
Instant tough bonding of hydrogels for soft machines and electronics.
Sci Adv,
2017, 3: e1700053
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Instant tough bonding of hydrogels for soft machines and electronics&author=Wirthl D&author=Pichler R&author=Drack M&publication_year=2017&journal=Sci Adv&volume=3&pages=e1700053
[15]
Yuk
H,
Lu
B,
Zhao
X.
Hydrogel bioelectronics.
Chem Soc Rev,
2019, 48: 1642-1667
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hydrogel bioelectronics&author=Yuk H&author=Lu B&author=Zhao X&publication_year=2019&journal=Chem Soc Rev&volume=48&pages=1642-1667
[16]
Sheng
H,
Wang
X,
Kong
N, et al.
Neural interfaces by hydrogels.
Extreme Mech Lett,
2019, 30: 100510
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Neural interfaces by hydrogels&author=Sheng H&author=Wang X&author=Kong N&publication_year=2019&journal=Extreme Mech Lett&volume=30&pages=100510
[17]
Shepherd
R F,
Ilievski
F,
Choi
W, et al.
Multigait soft robot.
Proc Natl Acad Sci USA,
2011, 108: 20400-20403
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multigait soft robot&author=Shepherd R F&author=Ilievski F&author=Choi W&publication_year=2011&journal=Proc Natl Acad Sci USA&volume=108&pages=20400-20403
[18]
Li
T,
Li
G,
Liang
Y, et al.
Fast-moving soft electronic fish.
Sci Adv,
2017, 3: e1602045
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fast-moving soft electronic fish&author=Li T&author=Li G&author=Liang Y&publication_year=2017&journal=Sci Adv&volume=3&pages=e1602045
[19]
Whitesides
G M.
The origins and the future of microfluidics.
Nature,
2006, 442: 368-373
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=The origins and the future of microfluidics&author=Whitesides G M&publication_year=2006&journal=Nature&volume=442&pages=368-373
[20]
Yang
C H,
Chen
B,
Lu
J J, et al.
Ionic cable.
Extreme Mech Lett,
2015, 3: 59-65
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ionic cable&author=Yang C H&author=Chen B&author=Lu J J&publication_year=2015&journal=Extreme Mech Lett&volume=3&pages=59-65
[21]
Keplinger
C,
Sun
J Y,
Foo
C C, et al.
Stretchable, transparent, ionic conductors.
Science,
2013, 341: 984-987
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stretchable, transparent, ionic conductors&author=Keplinger C&author=Sun J Y&author=Foo C C&publication_year=2013&journal=Science&volume=341&pages=984-987
[22]
Yuk
H,
Zhang
T,
Parada
G A, et al.
Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures.
Nat Commun,
2016, 7: 12028
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures&author=Yuk H&author=Zhang T&author=Parada G A&publication_year=2016&journal=Nat Commun&volume=7&pages=12028
[23]
Yu
Y,
Yuk
H,
Parada
G A, et al.
Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes.
Adv Mater,
2019, 31: 1807101
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes&author=Yu Y&author=Yuk H&author=Parada G A&publication_year=2019&journal=Adv Mater&volume=31&pages=1807101
[24]
Wang
X,
Jiang
M,
Zhou
Z, et al.
3D printing of polymer matrix composites: A review and prospective.
Compos Part B-Eng,
2017, 110: 442-458
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=3D printing of polymer matrix composites: A review and prospective&author=Wang X&author=Jiang M&author=Zhou Z&publication_year=2017&journal=Compos Part B-Eng&volume=110&pages=442-458
[25]
Sun
J Y,
Keplinger
C,
Whitesides
G M, et al.
Ionic skin.
Adv Mater,
2014, 26: 7608-7614
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ionic skin&author=Sun J Y&author=Keplinger C&author=Whitesides G M&publication_year=2014&journal=Adv Mater&volume=26&pages=7608-7614
[26]
Yang
C,
Suo
Z.
Hydrogel ionotronics.
Nat Rev Mater,
2018, 3: 125-142
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hydrogel ionotronics&author=Yang C&author=Suo Z&publication_year=2018&journal=Nat Rev Mater&volume=3&pages=125-142
[27]
Ekblad
T,
Bergström
G,
Ederth
T, et al.
Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments.
Biomacromolecules,
2008, 9: 2775-2783
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments&author=Ekblad T&author=Bergström G&author=Ederth T&publication_year=2008&journal=Biomacromolecules&volume=9&pages=2775-2783
[28]
Liu
M,
Wang
S,
Wei
Z, et al.
Bioinspired design of a superoleophobic and low adhesive water/solid interface.
Adv Mater,
2009, 21: 665-669
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bioinspired design of a superoleophobic and low adhesive water/solid interface&author=Liu M&author=Wang S&author=Wei Z&publication_year=2009&journal=Adv Mater&volume=21&pages=665-669
[29]
Lin
L,
Yi
H,
Guo
X, et al.
Nonswellable hydrogels with robust micro/nano-structures and durable superoleophobic surfaces under seawater.
Sci China Chem,
2018, 61: 64-70
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nonswellable hydrogels with robust micro/nano-structures and durable superoleophobic surfaces under seawater&author=Lin L&author=Yi H&author=Guo X&publication_year=2018&journal=Sci China Chem&volume=61&pages=64-70
[30]
Takahashi
R,
Shimano
K,
Okazaki
H, et al.
Tough particle-based double network hydrogels for functional solid surface coatings.
Adv Mater Interfaces,
2018, 5: 1801018
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tough particle-based double network hydrogels for functional solid surface coatings&author=Takahashi R&author=Shimano K&author=Okazaki H&publication_year=2018&journal=Adv Mater Interfaces&volume=5&pages=1801018
[31]
Murosaki
T,
Ahmed
N,
Gong
J P.
Antifouling properties of hydrogels.
Sci Tech Adv Mater,
2012, 12: 064706
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Antifouling properties of hydrogels&author=Murosaki T&author=Ahmed N&author=Gong J P&publication_year=2012&journal=Sci Tech Adv Mater&volume=12&pages=064706
[32]
Zander
Z K,
Becker
M L.
Antimicrobial and antifouling strategies for polymeric medical devices.
ACS Macro Lett,
2017, 7: 16-25
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Antimicrobial and antifouling strategies for polymeric medical devices&author=Zander Z K&author=Becker M L&publication_year=2017&journal=ACS Macro Lett&volume=7&pages=16-25
[33]
Gokaltun
A,
Yarmush
M L,
Asatekin
A, et al.
Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology.
Technology,
2017, 05: 1-12
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recent advances in nonbiofouling PDMS surface modification strategies applicable to microfluidic technology&author=Gokaltun A&author=Yarmush M L&author=Asatekin A&publication_year=2017&journal=Technology&volume=05&pages=1-12
[34]
Makamba
H,
Hsieh
Y Y,
Sung
W C, et al.
Stable permanently hydrophilic protein-resistant thin-film coatings on poly(dimethylsiloxane) substrates by electrostatic self-assembly and chemical cross-linking.
Anal Chem,
2005, 77: 3971-3978
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stable permanently hydrophilic protein-resistant thin-film coatings on poly(dimethylsiloxane) substrates by electrostatic self-assembly and chemical cross-linking&author=Makamba H&author=Hsieh Y Y&author=Sung W C&publication_year=2005&journal=Anal Chem&volume=77&pages=3971-3978
[35]
Siow
K S,
Kumar
S,
Griesser
H J.
Low-pressure plasma methods for generating non-reactive hydrophilic and hydrogel-like bio-interface coatings—A review.
Plasma Process Polym,
2015, 12: 8-24
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-pressure plasma methods for generating non-reactive hydrophilic and hydrogel-like bio-interface coatings—A review&author=Siow K S&author=Kumar S&author=Griesser H J&publication_year=2015&journal=Plasma Process Polym&volume=12&pages=8-24
[36]
Berdichevsky
Y,
Khandurina
J,
Guttman
A, et al.
UV/ozone modification of poly(dimethylsiloxane) microfluidic channels.
Sens Actuat B-Chem,
2004, 97: 402-408
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=UV/ozone modification of poly(dimethylsiloxane) microfluidic channels&author=Berdichevsky Y&author=Khandurina J&author=Guttman A&publication_year=2004&journal=Sens Actuat B-Chem&volume=97&pages=402-408
[37]
Hu
S,
Ren
X,
Bachman
M, et al.
Surface-directed, graft polymerization within microfluidic channels.
Anal Chem,
2004, 76: 1865-1870
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface-directed, graft polymerization within microfluidic channels&author=Hu S&author=Ren X&author=Bachman M&publication_year=2004&journal=Anal Chem&volume=76&pages=1865-1870
[38]
Yao
X,
Liu
J,
Yang
C, et al.
Hydrogel paint.
Adv Mater,
2019, 31: 1903062
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hydrogel paint&author=Yao X&author=Liu J&author=Yang C&publication_year=2019&journal=Adv Mater&volume=31&pages=1903062
[39]
Liu
Q,
Nian
G,
Yang
C, et al.
Bonding dissimilar polymer networks in various manufacturing processes.
Nat Commun,
2018, 9: 846
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bonding dissimilar polymer networks in various manufacturing processes&author=Liu Q&author=Nian G&author=Yang C&publication_year=2018&journal=Nat Commun&volume=9&pages=846
[40]
Le Floch
P,
Yao
X,
Liu
Q, et al.
Wearable and washable conductors for active textiles.
ACS Appl Mater Interfaces,
2017, 9: 25542-25552
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wearable and washable conductors for active textiles&author=Le Floch P&author=Yao X&author=Liu Q&publication_year=2017&journal=ACS Appl Mater Interfaces&volume=9&pages=25542-25552
[41]
Wang
Z,
Xiang
C,
Yao
X, et al.
Stretchable materials of high toughness and low hysteresis.
Proc Natl Acad Sci USA,
2019, 116: 5967-5972
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stretchable materials of high toughness and low hysteresis&author=Wang Z&author=Xiang C&author=Yao X&publication_year=2019&journal=Proc Natl Acad Sci USA&volume=116&pages=5967-5972
[42]
Çetinkaya
O,
Demirci
G,
Mergo
P.
Effect of the different chain transfer agents on molecular weight and optical properties of poly(methyl methacrylate).
Optical Mater,
2017, 70: 25-30
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effect of the different chain transfer agents on molecular weight and optical properties of poly(methyl methacrylate)&author=Çetinkaya O&author=Demirci G&author=Mergo P&publication_year=2017&journal=Optical Mater&volume=70&pages=25-30
[43]
Tian
K,
Bae
J,
Bakarich
S E, et al.
3D printing of transparent and conductive heterogeneous hydrogel-elastomer systems.
Adv Mater,
2017, 29: 1604827
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=3D printing of transparent and conductive heterogeneous hydrogel-elastomer systems&author=Tian K&author=Bae J&author=Bakarich S E&publication_year=2017&journal=Adv Mater&volume=29&pages=1604827
[44]
Tan
S H,
Nguyen
N T,
Chua
Y C, et al.
Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel.
Biomicrofluidics,
2010, 4: 032204
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel&author=Tan S H&author=Nguyen N T&author=Chua Y C&publication_year=2010&journal=Biomicrofluidics&volume=4&pages=032204
[45]
Yang
J,
Bai
R,
Suo
Z.
Topological adhesion of wet materials.
Adv Mater,
2018, 30: 1800671
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Topological adhesion of wet materials&author=Yang J&author=Bai R&author=Suo Z&publication_year=2018&journal=Adv Mater&volume=30&pages=1800671
[46]
Yang
J,
Bai
R,
Li
J, et al.
Design molecular topology for wet-dry adhesion.
ACS Appl Mater Interfaces,
2019, 11: 24802-24811
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design molecular topology for wet-dry adhesion&author=Yang J&author=Bai R&author=Li J&publication_year=2019&journal=ACS Appl Mater Interfaces&volume=11&pages=24802-24811
[47]
Chen
B,
Yang
J,
Bai
R, et al.
Molecular staples for tough and stretchable adhesion in integrated soft materials.
Adv Healthcare Mater,
2019, 8: 1900810
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Molecular staples for tough and stretchable adhesion in integrated soft materials&author=Chen B&author=Yang J&author=Bai R&publication_year=2019&journal=Adv Healthcare Mater&volume=8&pages=1900810
[48]
Steck
J,
Yang
J,
Suo
Z.
Covalent topological adhesion.
ACS Macro Lett,
2019, 8: 754-758
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Covalent topological adhesion&author=Steck J&author=Yang J&author=Suo Z&publication_year=2019&journal=ACS Macro Lett&volume=8&pages=754-758
[49]
Yang
H,
Li
C,
Tang
J, et al.
Strong and degradable adhesion of hydrogels.
ACS Appl Bio Mater,
2019, 2: 1781-1786
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Strong and degradable adhesion of hydrogels&author=Yang H&author=Li C&author=Tang J&publication_year=2019&journal=ACS Appl Bio Mater&volume=2&pages=1781-1786
[50]
Gao
Y,
Wu
K,
Suo
Z.
Photodetachable adhesion.
Adv Mater,
2018, 333: 1806948
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Photodetachable adhesion&author=Gao Y&author=Wu K&author=Suo Z&publication_year=2018&journal=Adv Mater&volume=333&pages=1806948
[51]
Merlitz
H,
He
G L,
Wu
C X, et al.
Surface instabilities of monodisperse and densely grafted polymer brushes.
Macromolecules,
2008, 41: 5070-5072
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface instabilities of monodisperse and densely grafted polymer brushes&author=Merlitz H&author=He G L&author=Wu C X&publication_year=2008&journal=Macromolecules&volume=41&pages=5070-5072
[52]
Tyng
L Y,
Ramli
M R,
Othman
M B H, et al.
Effect of crosslink density on the refractive index of a polysiloxane network based on 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane.
Polym Int,
2013, 62: 382-389
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effect of crosslink density on the refractive index of a polysiloxane network based on 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane&author=Tyng L Y&author=Ramli M R&author=Othman M B H&publication_year=2013&journal=Polym Int&volume=62&pages=382-389
[53]
Kalcioglu
Z I,
Mahmoodian
R,
Hu
Y, et al.
From macro- to microscale poroelastic characterization of polymeric hydrogels via indentation.
Soft Matter,
2012, 8: 3393-3398
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=From macro- to microscale poroelastic characterization of polymeric hydrogels via indentation&author=Kalcioglu Z I&author=Mahmoodian R&author=Hu Y&publication_year=2012&journal=Soft Matter&volume=8&pages=3393-3398
[54]
Gong
J P,
Kagata
G,
Osada
Y.
Friction of gels. 4. Friction on charged gels.
J Phys Chem B,
1999, 103: 6007-6014
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Friction of gels. 4. Friction on charged gels&author=Gong J P&author=Kagata G&author=Osada Y&publication_year=1999&journal=J Phys Chem B&volume=103&pages=6007-6014
[55]
Tada
T,
Kaneko
D,
Gong
J P, et al.
Surface friction of poly(dimethyl siloxane) gel and its transition phenomenon.
Tribol Lett,
2004, 17: 505-511
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Surface friction of poly(dimethyl siloxane) gel and its transition phenomenon&author=Tada T&author=Kaneko D&author=Gong J P&publication_year=2004&journal=Tribol Lett&volume=17&pages=505-511
[56]
Yashima
S,
Takase
N,
Kurokawa
T, et al.
Friction of hydrogels with controlled surface roughness on solid flat substrates.
Soft Matter,
2014, 10: 3192-3199
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Friction of hydrogels with controlled surface roughness on solid flat substrates&author=Yashima S&author=Takase N&author=Kurokawa T&publication_year=2014&journal=Soft Matter&volume=10&pages=3192-3199
[57]
Vogl O, Tirrell D. Functional polymers with biologically active groups. J Macromol Sci Chem, 1979, 13: 415–439.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vogl O, Tirrell D. Functional polymers with biologically active groups. J Macromol Sci Chem, 1979, 13: 415–439&
[58]
Fréchet
J M.
Functional polymers and dendrimers: Reactivity, molecular architecture, and interfacial energy.
Science,
1994, 263: 1710-1715
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Functional polymers and dendrimers: Reactivity, molecular architecture, and interfacial energy&author=Fréchet J M&publication_year=1994&journal=Science&volume=263&pages=1710-1715