logo

SCIENCE CHINA Information Sciences, Volume 59 , Issue 1 : 010202(2016) https://doi.org/10.1007/s11432-015-5504-6

Formation control of multiple Euler-Lagrange systems via null-space-based behavioral control

More info
  • ReceivedNov 24, 2015
  • AcceptedDec 4, 2015
  • PublishedDec 21, 2015

Abstract

this paper addresses the formation control problem of multiple Euler-Lagrange systems with model uncertainties in the environment containing obstacles. Utilizing the null-space-based (NSB) behavioral control architecture, the proposed problem can be decomposed into elementary missions (behaviors) with different priorities and implemented by each individual system. A class of novel coordination control algorithms is constructed and utilized to achieve accurate formation task while avoiding obstacles and guaranteeing the model uncertainty rejection objective. By using sliding mode control and Lyapunov theory, the formation performance in closed-loop multi-agent systems is proven achievable if the state-dependent gain of the obstacle avoidance mission is appropriately designed. finally, simulation examples demonstrate the effectiveness of the algorithms.


Funded by

national Natural Science Foundation of China(61321002)

education and Research Foundation for Young Teachers of Fujian Province(JA15609)

national Natural Science Foundation of China(61175112)

research Foundation for Outstanding Young Scholars in the University of Fujian Province Beijing Education Committee Cooperation Building Foundation Project Beijing Outstanding Ph.D. Program Mentor Grant(20131000704)

national Natural Science Foundation of China(61573062)

national Natural Science Foundation of China(60925011)

national Natural Science Foundation of China(61120106010)

program for Changjiang Scholars and Innovative Research Team in University(IRT1208)


Acknowledgment

Acknowledgments

This work was supported by national Natural Science Foundation of China (Grant Nos. 61321002, 60925011, 61175112, 61120106010, 61573062), program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1208), education and Research Foundation for Young Teachers of Fujian Province (Grant No. JA15609), research Foundation for Outstanding Young Scholars in the University of Fujian Province, Beijing Education Committee Cooperation Building Foundation Project, and Beijing Outstanding Ph.D. Program Mentor Grant (Grant No. 20131000704).


References

[1] Ren W, Beard R W. Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. London: Springer, 2008. Google Scholar

[2] Wang L, Jiang F C, Xie G M, et al. Sci China Ser-F: Inf Sci, 2009, 52: 2074-2088 CrossRef Google Scholar

[3] Wang Q, Wang Y Z. Sci China Inf Sci, 2014, 57: 012203-2088 Google Scholar

[4] Min H, Wang S, Sun F, et al. Syst Control Lett, 2012, 61: 238-246 CrossRef Google Scholar

[5] Wang H. Automatica, 2013, 49: 2774-2779 CrossRef Google Scholar

[6] Mei J, Ren W, Chen J, et al. Automatica, 2013, 49: 1723-1731 CrossRef Google Scholar

[7] Nu\~{n}o E, Ortega R, Jayawardhana B, et al. Automatica, 2013, 49: 3065-3071 CrossRef Google Scholar

[8] Chen F, Feng G, Liu L, et al. IEEE Trans Autom Control, 2015, 60: 547-552 CrossRef Google Scholar

[9] Meng Z, Ren W, You Z. Automatica, 2010, 46: 2092-2099 CrossRef Google Scholar

[10] Ren W. Int J Control, 2009, 82: 2137-2149 CrossRef Google Scholar

[11] Sandell Jr N R, Varaiya P, Athans M, et al. IEEE Trans Autom Control, 1978, 23: 108-128 CrossRef Google Scholar

[12] Balch T, Arkin R C. IEEE Trans Robot Autom, 1998, 14: 926-939 CrossRef Google Scholar

[13] Leonard N E, Fiorelli E. Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, 2001. 2968--2973. Google Scholar

[14] Feddema J T, Lewis C, Schoenwald D. IEEE Trans Robot Autom, 2002, 18: 852-864 CrossRef Google Scholar

[15] Belta C, Kumar V. IEEE Trans Robot, 2004, 20: 865-875 CrossRef Google Scholar

[16] Olfati-Saber R, Fax A, Murray R M. Proc IEEE, 2007, 95: 215-233 CrossRef Google Scholar

[17] Chung S J, Slotine J J E. IEEE Trans Robot, 2009, 25: 686-700 CrossRef Google Scholar

[18] Qu Z. Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles. London: Springer-Verlag, 2009. Google Scholar

[19] Arrichiello F. Coordination control of multiple mobile robots. Dissertation of Doctoral Degree. Cassino: Universita Degli Studi Di Cassino, 2006. Google Scholar

[20] Antonelli G, Chiaverini S. IEEE Trans Robot, 2006, 22: 1285-1292 CrossRef Google Scholar

[21] Antonelli G, Arrichiello F, Chiaverini S. Intell Serv Robot, 2008, 1: 27-39 CrossRef Google Scholar

[22] Marino A, Parker L E, Antonelli G, et al. J Intell Robot Syst, 2013, 71: 423-444 CrossRef Google Scholar

[23] Huang J, Fang H, Dou L, et al. IEEE/CAA J Automat Sin, 2014, 1: 1-9 Google Scholar

[24] Cheng L, Hou Z G, Tan M. Decentralized adaptive consensus control for multi-manipulator system with uncertain dynamics. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Singapore, 2008. 2712--2717. Google Scholar

[25] Cheng L, Hou Z G, Tan M. Decentralized adaptive leader-follower control of multi-manipulator system with uncertain dynamics. In: Proceedings of 34th Annual Conference of IEEE In Industrial Electronics, Orlando, 2008. 1608--1613. Google Scholar

[26] Dong W, Farrell J. IEEE Trans Autom Control, 2008, 53: 1434-1448 CrossRef Google Scholar

[27] Yang Q, Fang H, Mao Y, et al. J Syst Eng Electron, 2014, 25: 671-680 CrossRef Google Scholar

[28] Stilwell D J, Bishop B E. IEEE Control Syst Mag, 2000, 20: 45-52 CrossRef Google Scholar

[29] Olfati-Saber R, Murray R M. Distributed cooperative control of multiple vehicle formations using structural potential functions. In: Proceedings of the 15th IFAC World Congress, Barcelona, 2002. 346--352. Google Scholar

[30] Wang X, Yadav V, Balakrishnan S N. IEEE Trans Control Syst Technol, 2007, 15: 672-679 CrossRef Google Scholar

[31] Hou Z G, Cheng L, Tan M. IEEE Trans Syst Man Cybern Part B-Cybern, 2009, 39: 636-647 CrossRef Google Scholar

[32] Cheng L, Hou Z G, Tan M, et al. IEEE Trans Neural Netw, 2010, 21: 1351-1358 CrossRef Google Scholar

[33] Zhou N, Xia Y, Lu K, et al. Int J Syst Sci, 2015, 46: 2493-2509 CrossRef Google Scholar

[34] Zhou N, Xia Y, Wang M, et al. Int J Robust Nonlinear Control, 2015, 25: 1862-1876 CrossRef Google Scholar

[35] Zhou N, Xia Y. IET Contr Theory Appl, 2015, 9: 2222-2231 CrossRef Google Scholar

[36] Yu S, Yu X, Shirinzadeh B, et al. Automatica, 2005, 41: 1957-1964 CrossRef Google Scholar

[37] Kwon J W, Chwa D. IEEE Trans Robot, 2012, 28: 1335-1345 CrossRef Google Scholar

[38] Ranjbar-Sahraei B, Shabaninia F, Nemati A, et al. IEEE Trans Ind Electron, 2012, 59: 3124-3134 Google Scholar

[39] Kan Z, Dani A P, Shea J M, et al. IEEE Trans Autom Control, 2012, 57: 1827-1832 CrossRef Google Scholar

[40] Fukushima H, Kon K, Matsuno F. IEEE Trans Robot, 2013, 29: 1308-1317 CrossRef Google Scholar

[41] Oh K K, Ahn H S. IEEE Trans Autom Control, 2014, 59: 540-545 CrossRef Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号