SCIENCE CHINA Information Sciences, Volume 60 , Issue 3 : 032203(2017) https://doi.org/10.1007/s11432-016-0169-8

${\mathcal{L}}_{1}$ adaptive control of a generic hypersonic vehicle model with a blended pneumatic and thrust vectoring control strategy

More info
  • ReceivedApr 22, 2016
  • AcceptedJun 13, 2016
  • PublishedDec 9, 2016


The extreme aeroheating at hypersonic regime and the insufficient dynamic pressure in the near space limit the achievable performance of the hypersonic vehicles using aerosurfaces alone. In this paper, an integrated pneumatic and thrust vectoring control strategy is employed to design a control scheme for the longitudinal dynamics of a hypersonic vehicle model. The methodology reposes upon a division of the model dynamics, and an ${\mathcal{L}}_{1}$ adaptive control architecture is applied to the design of the inner-loop and outer-loop controllers. Further, a control allocation algorithm is developed to coordinate pneumatic and thrust vectoring control. Simulation results demonstrate that the allocation algorithm is effective in control coordination, and the proposed control scheme achieves excellent tracking performance in spite of aerodynamic uncertainties.

  • Figure 1

    Conceptual block diagram of the proposed control scheme.

  • Figure 2

    Interconnection of the ${\mathcal{L}}_{1}$ adaptive control scheme.

  • Figure 3

    Reference trajectories. (a) $V_{\rm r}$; (b) $\gamma_r$.

  • Figure 4

    Tracking errors of the proposed control scheme. (a) Tracking error $V-V_{\rm r}$; (b) tracking error $\gamma-\gamma_r$.

  • Figure 5

    Control inputs of the proposed controller. (a) Control input $\beta$; (b) control input $\delta_{\rm e}$; (c) control input $\phi$.

  • Figure 6

    Tracking error plots. (a) $V$ tracking error; (b) $\gamma$ tracking error.

  • Figure 7

    Simulation results of the second test case study. (a) Control input $\delta_{\rm e}$; (b) control input $\phi$; (c) angular state $q$; (d) angular state $\alpha$; (e) dynamic pressure $\bar{q}$; (f) altitude $h$.

  • Table 1   Bounds of the uncertain aerodynamic coefficients
    Element of error vector Error bounds (3$\sigma$ limits)
    $\epsilon_{C_{\rm L}^{\alpha}}$ $\left[0.745,1.255\right]$
    $\epsilon_{C_{\rm D}^{\alpha}}$ $\left[0.88,1.12\right]$
    $\epsilon_{C_{\rm M}^{\alpha}}$ $\left[0.85,1.15\right]$
    $\epsilon_{C_{\rm M}^q}$ $\left[0.475,1.525\right]$
    $\epsilon_{C_{\rm M}^{\delta_{\rm e}}}$ $\left[0.925,1.075\right]$

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号