logo

SCIENCE CHINA Information Sciences, Volume 60 , Issue 3 : 032204(2017) https://doi.org/10.1007/s11432-016-0284-2

Distributed incremental bias-compensated RLS estimation over multi-agent networks

More info
  • ReceivedJul 11, 2016
  • AcceptedAug 25, 2016
  • PublishedFeb 7, 2016

Abstract


Funded by

National Natural Science Foundation of China(61421001)


Acknowledgment

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 61421001).


References

[1] Sayed A H. Adaptation, learning, and optimization over networks. Found Trends March Learn, 2014, 7: 312-318 Google Scholar

[2] Cattivelli F S, Sayed A H. Analysis of spatial and incremental LMS processing for distributed estimation. IEEE Trans Signal Process, 2011, 59: 1465-1480 CrossRef Google Scholar

[3] Estrin D, Girod L, Pottie G, et al. Instrumenting the world with wireless sensor networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Salt Lake City, 2001. 2033--2036. Google Scholar

[4] Sayed A H, Lopes C G. Distributed processing over adaptive networks. In: Proceedings of the 9th International Symposium on Signal Processing and its Applications (ISSPA), Sharjah, 2007. 1--3. Google Scholar

[5] Brust M R, Akbas M I, Turgut D. Multi-hop localization system for environmental monitoring in wireless sensor and actor networks. Concurrency Comput Pract Exper, 2013, 25: 701-717 CrossRef Google Scholar

[6] Lopes C G, Sayed A H. Incremental adaptive strategies over distributed networks. IEEE Trans Signal Process, 2007, 55: 4064-4077 CrossRef Google Scholar

[7] Khalili A, Tinati M A, Rastegarnia A. Analysis of incremental RLS adaptive networks with noisy links. IEICE Electron Express, 2011, 8: 623-628 CrossRef Google Scholar

[8] Bogdanovic N, Plata-Chaves J, Berberidis K. Distributed incremental-based LMS for node-specific parameter estimation over adaptive networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, 2013. 5425--5429. Google Scholar

[9] Plata -Chaves J, Bogdanovic N, Berberidis K. Distributed incremental-based RLS for node-specific parameter estimation over adaptive networks. In: Proceedings of the 21st European Signal Processing Conference (EUSIPCO), Marrakech, 2013. 1--5. Google Scholar

[10] Khalili A, Rastegarnia A, Bazzi W M, et al. Derivation and analysis of incremental augmented complex least mean square algorithm. IET Signal Process, 2015, 9: 312-319 CrossRef Google Scholar

[11] Bogdanovic N, Plata -Chaves J, Berberidis K. Distributed incremental-based LMS for node-specific adaptive parameter estimation. IEEE Trans Signal Process, 2014, 62: 5382-5397 CrossRef Google Scholar

[12] Khalili A, Rastegarnia A, Bazzi W M, et al. Tracking performance of incremental augmented complex least mean square adaptive network in the presence of model non-stationarity. IET Signal Process, 2016, 10: 798-804 CrossRef Google Scholar

[13] Rastegarnia A, Tinati M A, Khalili A. Performance analysis of quantized incremental LMS algorithm for distributed adaptive estimation. Signal Process, 2010, 90: 2621-2627 CrossRef Google Scholar

[14] Rastegarnia A, Khalili A. Incorporating observation quality information into the incremental LMS adaptive networks. Arab J Sci Eng, 2014, 39: 987-995 CrossRef Google Scholar

[15] Tu S Y, Sayed A H. Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks. IEEE Trans Signal Process, 2012, 60: 6217-6234 CrossRef Google Scholar

[16] Sayed A H, Lopes C G. Adaptive processing over distributed networks. IEICE Trans Fund Electron Commun Comput Sci, 2007, 90: 1504-1510 Google Scholar

[17] Cattivelli F S, Lopes C G, Sayed A H. Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans Signal Process, 2008, 56: 1865-1877 CrossRef Google Scholar

[18] Abdolee R, Champagne B, Sayed A H. A diffusion LMS strategy for parameter estimation in noisy regressor applications. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, 2012. 749--753. Google Scholar

[19] Sayed A H, Tu S Y, Chen J S, et al. Diffusion strategies for adaptation and learning over networks: an examination of distributed strategies and network behavior. IEEE Signal Process Mag, 2013, 30: 155-171 CrossRef Google Scholar

[20] Chen J S, Sayed A H. Distributed Pareto optimization via diffusion strategies. IEEE J Sel Top Sign Proces, 2013, 7: 205-220 CrossRef Google Scholar

[21] Sayed A H. Diffusion adaptation over networks. In: Academic Press Library in Signal Processing. Boston: Academic Press Elsevier, 2014. 323--454. Google Scholar

[22] Cattivelli F S, Sayed A H. Diffusion LMS strategies for distributed estimation. IEEE Trans Signal Process, 2010, 58: 1035-1048 CrossRef Google Scholar

[23] Bertrand A, Moonen M, Sayed A H. Diffusion-based bias-compensated RLS for distributed estimation over adaptive sensor networks. In: Proceedings of the 19th European Signal Processing Conference (EUSIPCO), Barcelona, 2011. 1025--1029. Google Scholar

[24] Bertrand A, Moonen M, Sayed A H. Diffusion bias-compensated RLS estimation over adaptive networks. IEEE Trans Signal Process, 2011, 59: 5212-5224 CrossRef Google Scholar

[25] Zhao X C, Tu S Y, Sayed A H. Diffusion adaptation over networks under imperfect information exchange and non-stationary data. IEEE Trans Signal Process, 2012, 60: 3460-3475 CrossRef Google Scholar

[26] Jia L J, Tao R, Wang Y, et al. Forward/backward prediction solution for adaptive noisy FIR filtering. Sci China Ser F-Inf Sci, 2009, 52: 1007-1014 CrossRef Google Scholar

[27] Ljung L. System Identification. Boston: Birkhauser, 1998. 163--173. Google Scholar

[28] Haykin S. Adaptive Filter Theory. 4th ed. Upper Saddle River: Prentice Hall, 2002. 442--444. Google Scholar