SCIENCE CHINA Information Sciences, Volume 63 , Issue 10 : 209202(2020) https://doi.org/10.1007/s11432-018-9619-4

Isomorphism-based robust right coprime factorization for uncertain nonlinear feedback systems

More info
  • ReceivedJul 11, 2018
  • AcceptedSep 5, 2018
  • PublishedMar 26, 2020


There is no abstract available for this article.


This work was supported by National Natural Science Foundation of China (Grant Nos. 61304093, 61472195).


[1] Xue L, Zhang W, Xie X. Global practical tracking for stochastic time-delay nonlinear systems with SISS-like inverse dynamics. Sci China Inf Sci, 2017, 60: 122201 CrossRef Google Scholar

[2] Zheng C, Li L, Wang L. How much information is needed in quantized nonlinear control?. Sci China Inf Sci, 2018, 61: 092205 CrossRef Google Scholar

[3] Chen X, Zhai G, Fukuda T. An approximate inverse system for nonminimum-phase systems and its application to disturbance observer. Syst Control Lett, 2004, 52: 193-207 CrossRef Google Scholar

[4] Ball J A, Van der Schaft A J. J-inner-outer factorization, J-spectral factorization, and robust control for nonlinear systems. IEEE Trans Automat Contr, 1996, 41: 379-392 CrossRef Google Scholar

[5] Guanrong Chen , Zhengzhi Han . Robust right coprime factorization and robust stabilization of nonlinear feedback control systems. IEEE Trans Automat Contr, 1998, 43: 1505-1509 CrossRef Google Scholar

[6] Deng M, Inoue A, Ishikawa K. Operator-Based Nonlinear Feedback Control Design Using Robust Right Coprime Factorization. IEEE Trans Automat Contr, 2006, 51: 645-648 CrossRef Google Scholar

[7] Bu N, Deng M. System Design for Nonlinear Plants Using Operator-Based Robust Right Coprime Factorization and Isomorphism. IEEE Trans Automat Contr, 2011, 56: 952-957 CrossRef Google Scholar

[8] Bu N, Deng M. Isomorphism-based robust right coprime factorisation of non-linear unstable plants with perturbations. IET Control Theor Appl, 2010, 4: 2381-2390 CrossRef Google Scholar

[9] Bu N, Deng M. Isomorphism-based robust right coprime factorization realization for non-linear feedback systems. Proc Institution Mech Engineers Part I-J Syst Control Eng, 2011, 225: 760-769 CrossRef Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号