logo

SCIENCE CHINA Information Sciences, Volume 63 , Issue 2 : 129202(2020) https://doi.org/10.1007/s11432-018-9761-2

Exponentially convergent angular velocity estimator design for rigid body motion: a singular perturbation approach

More info
  • ReceivedOct 30, 2018
  • AcceptedDec 27, 2018
  • PublishedSep 4, 2019

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61773024, 61374033).


Supplement

Appendixes A–D.


References

[1] Ning X L, Ding Z H, Chen P P. Spacecraft angular velocity estimation method using optical flow of stars. Sci China Inf Sci, 2018, 61: 112203 CrossRef Google Scholar

[2] Salcudean S. A globally convergent angular velocity observer for rigid body motion. IEEE Trans Automat Contr, 1991, 36: 1493-1497 CrossRef Google Scholar

[3] Zlotnik D E, Forbes J R. Exponential convergence of a nonlinear attitude estimator. Automatica, 2016, 72: 11-18 CrossRef Google Scholar

[4] Lee T. Exponential stability of an attitude tracking control system on SO(3) for large-angle rotational maneuvers. Syst Control Lett, 2012, 61: 231-237 CrossRef Google Scholar

[5] Chen W H, Yang J, Guo L. Disturbance-Observer-Based Control and Related Methods-An Overview. IEEE Trans Ind Electron, 2016, 63: 1083-1095 CrossRef Google Scholar

[6] Sun Z Q, Xia Y Q, Dai L. Disturbance Rejection MPC for Tracking of Wheeled Mobile Robot. IEEE/ASME Trans Mechatron, 2017, 22: 2576-2587 CrossRef Google Scholar

[7] Wu T H, Lee T. Angular velocity observer for velocity-free attitude tracking control on ${\rm~~SO}(3)$. In: Proceedings of 2015 IEEE Conference on European Control Conference, Linz, 2015. 1824--1829. Google Scholar

[8] Atassi A N, Khalil H K. A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans Automat Contr, 1999, 44: 1672-1687 CrossRef Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号