logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 3 : 139103(2021) https://doi.org/10.1007/s11432-018-9798-8

Key-dependent cube attack on reduced Frit permutation in Duplex-AE modes

More info
  • ReceivedNov 26, 2018
  • AcceptedFeb 14, 2019
  • PublishedFeb 1, 2021

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Key Research and Development Program of China (Grant No. 2017YFA0303903), National Natural Science Foundation of China (Grant No. 62072270), National Cryptography Development Fund (Grant Nos. MMJJ20170121, MMJJ20180101), and Zhejiang Province Key RD Project (Grant No. 2017C01062).


Supplement

Appendix A.


References

[1] Simon T, Batina L, Daemen J, et al. Towards lightweight cryptographic primitives with built-in fault-detection. IACR Cryptology ePrint Archive, Report 2018/729, 2018. https://eprint.iacr.org. Google Scholar

[2] Dobraunig C, Eichlseder M, Mendel F, et al. Algebraic cryptanalysis of frit. IACR Cryptology ePrint Archive, Report 2018/809, 2018. https://eprint.iacr.org. Google Scholar

[3] Bertoni G, Daemen J, Peeters M, et al. Duplexing the sponge: single-pass authenticated encryption and other applications. In: Proceedings of International Workshop on Selected Areas in Cryptography, 2012. 320--337. Google Scholar

[4] Huang S Y, Wang X Y, Xu G W, et al. Conditional cube attack on reduced-round keccak sponge function. In: Proceedings of Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2017. 259--288. Google Scholar

[5] Dong X Y, Li Z, Wang X Y, et al. Cube-like attack on round-reduced initialization of Ketje Sr. IACR Trans Symmetric Cryptol, 2017, 2017: 259--280. Google Scholar

[6] Li Z, Bi W Q, Dong X Y, et al. Improved conditional cube attacks on keccak keyed modes with MILP method. In: Proceedings of International Conference on the Theory and Application of Cryptology and Information Security, 2017. 99--127. Google Scholar

[7] Li Z, Dong X Y, Wang X Y. Conditional cube attack on round-reduced ASCON. IACR Trans Symmetric Cryptol, 2017, 2017: 175--202. Google Scholar

[8] Bi W, Dong X, Li Z. MILP-aided cube-attack-like cryptanalysis on Keccak Keyed modes. Des Codes Cryptogr, 2018, 86: 1-26 CrossRef Google Scholar

  • Table 1  

    Table 1Summary of cryptanalysis results

    $\alpha$ $\beta$ Attacked round Time complexity
    $a$ 9 $2^{29}$
    $a$ $b$ 10 $2^{29}$
    $c$ 9 $2^{29}$
    8 $2^{29}$
    $a$ 9 $2^{42}$
    10 $2^{63}$
    11 $2^{97}$
    9 $2^{29}$
    $b$ $b$ 10 $2^{42}$
    11 $2^{63}$
    12 $2^{97}$
    8 $2^{29}$
    $c$ 9 $2^{42}$
    10 $2^{63}$
    11 $2^{97}$
    $a$ 10 $2^{29}$
    $c$ $b$ 11 $2^{29}$
    $c$ 10 $2^{29}$