References
[1]
Cortés
J.
Finite-time convergent gradient flows with applications to network consensus.
Automatica,
2006, 42: 1993-2000
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-time convergent gradient flows with applications to network consensus&author=Cortés J&publication_year=2006&journal=Automatica&volume=42&pages=1993-2000
[2]
Sundaram S, Hadjicostis C N. Finite-time distributed consensus in graphs with time-invariant topologies. In: Proceedings of American Control Conference, New York, 2007. 711--716.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sundaram S, Hadjicostis C N. Finite-time distributed consensus in graphs with time-invariant topologies. In: Proceedings of American Control Conference, New York, 2007. 711--716&
[3]
Long Wang
,
Feng Xiao
.
Finite-Time Consensus Problems for Networks of Dynamic Agents.
IEEE Trans Automat Contr,
2010, 55: 950-955
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite-Time Consensus Problems for Networks of Dynamic Agents&author=Long Wang &author=Feng Xiao &publication_year=2010&journal=IEEE Trans Automat Contr&volume=55&pages=950-955
[4]
Wang
X,
Hong
Y.
Distributed finite-time χ-consensus algorithms for multi-agent systems with variable coupling topology.
J Syst Sci Complex,
2010, 23: 209-218
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed finite-time χ-consensus algorithms for multi-agent systems with variable coupling topology&author=Wang X&author=Hong Y&publication_year=2010&journal=J Syst Sci Complex&volume=23&pages=209-218
[5]
Lin
P,
Ren
W,
Farrell
J A.
Distributed Continuous-Time Optimization: Nonuniform Gradient Gains, Finite-Time Convergence, and Convex Constraint Set.
IEEE Trans Automat Contr,
2017, 62: 2239-2253
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Distributed Continuous-Time Optimization: Nonuniform Gradient Gains, Finite-Time Convergence, and Convex Constraint Set&author=Lin P&author=Ren W&author=Farrell J A&publication_year=2017&journal=IEEE Trans Automat Contr&volume=62&pages=2239-2253
[6]
Necoara I, Patrascu A. Randomized projection methods for convex feasibility problems. 2018,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Necoara I, Patrascu A. Randomized projection methods for convex feasibility problems. 2018,&
[7]
Shah S M, Borkar V S. Distributed stochastic approximation with local projections. 2017,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shah S M, Borkar V S. Distributed stochastic approximation with local projections. 2017,&
[8]
Shi
G,
Johansson
K H,
Hong
Y.
Reaching an Optimal Consensus: Dynamical Systems That Compute Intersections of Convex Sets.
IEEE Trans Automat Contr,
2013, 58: 610-622
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reaching an Optimal Consensus: Dynamical Systems That Compute Intersections of Convex Sets&author=Shi G&author=Johansson K H&author=Hong Y&publication_year=2013&journal=IEEE Trans Automat Contr&volume=58&pages=610-622
[9]
Paden
B,
Sastry
S.
A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators.
IEEE Trans Circuits Syst,
1987, 34: 73-82
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A calculus for computing Filippov's differential inclusion with application to the variable structure control of robot manipulators&author=Paden B&author=Sastry S&publication_year=1987&journal=IEEE Trans Circuits Syst&volume=34&pages=73-82