logo

SCIENCE CHINA Information Sciences, Volume 63 , Issue 2 : 120112(2020) https://doi.org/10.1007/s11432-019-2721-0

Multi-attention based cross-domain beauty product image retrieval

More info
  • ReceivedJul 28, 2019
  • AcceptedNov 12, 2019
  • PublishedJan 14, 2020

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61772108, 61932020, 61976038).


Supplement

Experiments.


References

[1] Wen-Huang Cheng, Jia Jia and Huang, J. Perfect corp. challenge 2018: Half million beauty product image recognition. 2018. https://challenge2018.perfectcorp.com/. Google Scholar

[2] Lin Z, Yang Z, Huang F, et al. Regional maximum activations of convolutions with attention for cross-domain beauty and personal care product retrieval. In: Proceedings of ACM Multimedia Conference on Multimedia Conference, 2018. 2073--2077. Google Scholar

[3] Wang Q, Lai J X, Xu K, et al. Beauty product image retrieval based on multi-feature fusion and feature aggregation. In: Proceedings of ACM Multimedia Conference on Multimedia Conference, 2018. 2063--2067. Google Scholar

[4] Lim J H, Japar N, Ng C C, et al. Unprecedented usage of pre-trained cnns on beauty product. In: Proceedings of ACM Multimedia Conference on Multimedia Conference, 2018. 2068--2072. Google Scholar

[5] Sun H, Pang Y. GlanceNets - efficient convolutional neural networks with adaptive hard example mining. Sci China Inf Sci, 2018, 61: 109101 CrossRef Google Scholar

[6] Zhong J, Sun Y X, Yu Y L, et al. Attribute-guided network for cross-modal zero-shot hashing. IEEE Transactions on Neural Networks and Learning Systems, 2018. DOI: 10.1109/TNNLS.2019.2904991. Google Scholar

[7] Li H, Wang X, Tang J. Combining global and local matching of multiple features for precise item image retrieval. Multimedia Syst, 2013, 19: 37-49 CrossRef Google Scholar

[8] Zhou X, Yao C, Wen H, et al. East: an efficient and accurate scene text detector. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. 5551--5560. Google Scholar

[9] Tolias G, Sicre R, Jegou H. Particular object retrieval with integral max-pooling of CNN activations. In: Proceedings of the 4th International Conference on Learning Representations, San Juan, 2016. Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号