This work was supported by National Key RD Program of China (Grant No. 2018YFB1306100) and National Natural Science Foundation of China (Grant Nos. 61922089, 61773386, 61833016, 61903376, 61673311).
[1] Zhang J X, Hu C H, He X. A Novel Lifetime Estimation Method for Two-Phase Degrading Systems. IEEE Trans Rel, 2019, 68: 689-709 CrossRef Google Scholar
[2] Si X, Li T, Zhang Q. A General Stochastic Degradation Modeling Approach for Prognostics of Degrading Systems With Surviving and Uncertain Measurements. IEEE Trans Rel, 2019, 68: 1080-1100 CrossRef Google Scholar
[3] Si X, Li T, Zhang Q. Prognostics for Linear Stochastic Degrading Systems With Survival Measurements. IEEE Trans Ind Electron, 2020, 67: 3202-3215 CrossRef Google Scholar
[4] Si X-S, Hu C H, Li T M, et al. A joint order-replacement policy for deteriorating components with reliability constraint. Sci China Inf Sci, doi: 10.1007/s11432-018-9804-9. Google Scholar
[5] Xi J, Wang C, Liu H. Completely Distributed Guaranteed-Performance Consensualization for High-Order Multiagent Systems With Switching Topologies. IEEE Trans Syst Man Cybern Syst, 2019, 49: 1338-1348 CrossRef Google Scholar
[6] Si X, Li T, Zhang Q. An Optimal Condition-Based Replacement Method for Systems With Observed Degradation Signals. IEEE Trans Rel, 2018, 67: 1281-1293 CrossRef Google Scholar
[7] Hu C H, Pei H, Si X S. A Prognostic Model Based on DBN and Diffusion Process for Degrading Bearing. IEEE Trans Ind Electron, 2019, : 1-1 CrossRef Google Scholar
[8] Zhang Z, Si X, Hu C. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods. Eur J Operational Res, 2018, 271: 775-796 CrossRef Google Scholar
[9] Hudak S J J, Saxena A, Bucci R J, et al. Development of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate Data. Westinghouse R & D Center Westinghouse Electric Corporation, 1978. Google Scholar
[10] Meeker W Q, Escobar L A. Statistical Methods for Reliability Data. New York: John Wiley & Sons, Inc., 1998. Google Scholar
[11] Ye Z S, Xie M, Tang L C. Semiparametric Estimation of Gamma Processes for Deteriorating Products. Technometrics, 2014, 56: 504-513 CrossRef Google Scholar
[12] Li Z, Deng Y, Mastrangelo C. Model selection for degradation-based Bayesian reliability analysis. J Manufacturing Syst, 2015, 37: 72-82 CrossRef Google Scholar
[13] Chien-Yu Peng , Sheng-Tsaing Tseng . Mis-Specification Analysis of Linear Degradation Models. IEEE Trans Rel, 2009, 58: 444-455 CrossRef Google Scholar
[14] Chien-Yu Peng , Sheng-Tsaing Tseng . Statistical Lifetime Inference With Skew-Wiener Linear Degradation Models. IEEE Trans Rel, 2013, 62: 338-350 CrossRef Google Scholar
[15] Asensio Ramos A. The Minimum Description Length Principle and Model Selection in Spectropolarimetry. Astrophys J, 2006, 646: 1445-1451 CrossRef Google Scholar
[16] Bozdogan H. Akaike's Information Criterion and Recent Developments in Information Complexity.. J Math Psychology, 2000, 44: 62-91 CrossRef PubMed Google Scholar
[17] Nguyen K T P, Fouladirad M, Grall A. Model selection for degradation modeling and prognosis with health monitoring data. Reliability Eng Syst Saf, 2018, 169: 105-116 CrossRef Google Scholar
[18] Ben Abdessalem A, Dervilis N, Wagg D. Model selection and parameter estimation in structural dynamics using approximate Bayesian computation. Mech Syst Signal Processing, 2018, 99: 306-325 CrossRef Google Scholar
[19] Si X S, Wang W, Chen M Y. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution. Eur J Operational Res, 2013, 226: 53-66 CrossRef Google Scholar
[20] Meng X L, Rubin D B. Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 1993, 80: 267-278 CrossRef Google Scholar
[21] Chen N, Tsui K L. Condition monitoring and remaining useful life prediction using degradation signals: revisited. IIE Trans, 2013, 45: 939-952 CrossRef Google Scholar
[22] Chakraborty S, Gebraeel N, Lawley M. Residual-life estimation for components with non-symmetric priors. IIE Trans, 2009, 41: 372-387 CrossRef Google Scholar
[23] Gebraeel N Z, Lawley M A, Li R. Residual-life distributions from component degradation signals: A Bayesian approach. IIE Trans, 2005, 37: 543-557 CrossRef Google Scholar
[24] Nitithumbundit T, Chan J S K. An ECM algorithm for skewed multivariate variance Gamma distribution in normal mean-variance representation. Statistics, 2015. Google Scholar
[25] van Dyk D A, Meng X, Rubin D B. Maximum likelihood estimation via the ECM algorithm: computing the asymptotic variance. Statistica Sinica, 1995,5(1):55-75 https://www.jstor.org/stable/24305553. Google Scholar
[26] Zhang X, Yan X. A new statistical precipitation downscaling method with Bayesian model averaging: a case study in China. Clim Dyn, 2015, 45: 2541-2555 CrossRef Google Scholar
[27] Volinsky C T, Raftery A E, Madigan D. David Draper and E. I. George, and a rejoinder by the authors. Statist Sci, 1999, 14: 382-417 CrossRef Google Scholar
[28] Gebraeel N, Elwany A, Jing Pan A. Residual Life Predictions in the Absence of Prior Degradation Knowledge. IEEE Trans Rel, 2009, 58: 106-117 CrossRef Google Scholar
[29] Si X S, Chen M Y, Wang W. Specifying measurement errors for required lifetime estimation performance. Eur J Operational Res, 2013, 231: 631-644 CrossRef Google Scholar
Figure 1
The algorithm of RUL calculation for model ${M_c}$.
Figure 2
(Color online) Results of Bayesian-updated ECM algorithm for model ${M_x}$. (a) Simulated trajectory with IID errors; (b) predicted RUL of model ${M_x}$; (c) estimated ${\mu~'_{x0}}$ of model ${M_x}$; (d) estimated ${\mu~'_{x1}}$ of model ${M_x}$.
Figure 3
(Color online) Results of Bayesian-updated ECM algorithm for model ${M_y}$. (a) Simulated trajectory with Brownian errors; (b) predicted RUL of model ${M_y}$; (c) estimated ${\mu~'_{y0}}$ of model ${M_y}$; (d) estimated ${\mu~'_{y1}}$ of model ${M_y}$.
Figure 4
(Color online) Effectiveness of modified Bayesian-model-averaging method for trajectory with IID errors. protectłinebreak (a) Modified Bayesian model averaging for trajectory with IID errors; (b) original Bayesian model averaging for trajectory with IID errors; (c) the obtained model probability of the modified Bayesian model averaging for model ${M_x}$; (d) the obtained model probability of the original Bayesian model averaging for model ${M_x}$.
Figure 5
(Color online) Effectiveness of modified Bayesian model averaging for trajectory with Brownian errors. protectłinebreak (a) Modified Bayesian model averaging for trajectory with Brownian errors; (b) original Bayesian model averaging for trajectory Brownian errors; (c) obtained model probability of modified Bayesian model averaging for model ${M_y}$; (d) obtained model probability of original Bayesian model averaging for model ${M_y}$.
Figure 6
Illustration of a deformed motor bearing.
Figure 7
(Color online) Effectiveness of the proposed algorithm. (a) The observed drift data of the gyroscope; (b) estimated RUL of different prior parameters; (c) estimated RUL of different prior probabilities; (d) estimated RUL of our method.
Simulation parameter | Simulation distribution | |
${\theta'_x}$ | $N(0.02,1~\times~{10^{~-~6}})$ | |
Exponential degradation with IID errors | ${\beta'_x}$ | $N(0.01,1~\times~{10^{~-~6}})$ |
$\sigma_x^2$ | 0.1 | |
${\theta'_y}$ | $N(0.02,1~\times~{10^{~-~6}})$ | |
Exponential degradation with Brownian errors | ${\beta'_y}$ | $N(0.01,1~\times~{10^{~-~6}})$ |
$\sigma_y^2$ | 0.0004 |
Model | Parameter | Bayesian method [28] | Our method | ||
Distribution 1 | Distribution 2 | Distribution 3 | |||
${\theta~'_x}$ | $N(0.04,1~\times~{10^{~-~6}})$ | $N(0.04,1~\times~{10^{~-~6}})$ | $N(0.1,1~\times~{10^{~-~6}})$ | $N(0.2,1~\times~{10^{~-~6}})$ | |
${M_x}$ | ${\beta~'_x}$ | $N(0.02,1~\times~{10^{~-~6}})$ | $N(0.02,1~\times~{10^{~-~6}})$ | $N(0.05,1~\times~{10^{~-~6}})$ | $N(0.1,1~\times~{10^{~-~6}})$ |
$\sigma~_x^2$ | 0.01 | 0.01 | 0.01 | 0.01 | |
${\theta~'_y}$ | $N(0.04,1~\times~{10^{~-~6}})$ | $N(0.04,1~\times~{10^{~-~6}})$ | $N(0.1,1~\times~{10^{~-~6}})$ | $N(0.2,1~\times~{10^{~-~6}})$ | |
${M_y}$ | ${\beta~'_y}$ | $N(0.02,1~\times~{10^{~-~6}})$ | $N(0.02,1~\times~{10^{~-~6}})$ | $N(0.05,1~\times~{10^{~-~6}})$ | $N(0.1,1~\times~{10^{~-~6}})$ |
$\sigma~_y^2$ | 0.004 | 0.004 | 0.004 | 0.004 |
Model中国 | Parameter | Distribution 1 | Distribution 2 | Distribution 3 |
${\theta~'_x}$ | $N(0.0025,1~\times~{10^{~-~6}})$ | $N(0.005,1~\times~{10^{~-~6}})$ | $N(0.0075,1~\times~{10^{~-~6}})$ | |
${M_x}$ | ${\beta~'_x}$ | $N(0.001,1~\times~{10^{~-~6}})$ | $N(0.002,1~\times~{10^{~-~6}})$ | $N(0.003,1~\times~{10^{~-~6}})$ |
$\sigma~_x^2$ | 0.01 | 0.01 | 0.01 | |
${\theta~'_y}$ | $N(0.0025,1~\times~{10^{~-~6}})$ | $N(0.005,1~\times~{10^{~-~6}})$ | $N(0.0075,1~\times~{10^{~-~6}})$ | |
${M_y}$ | ${\beta~'_y}$ | $N(0.001,1~\times~{10^{~-~6}})$ | $N(0.002,1~\times~{10^{~-~6}})$ | $N(0.003,1~\times~{10^{~-~6}})$ |
$\sigma~_y^2$ | 0.00004 | 0.00004 | 0.00004 |