References
[1]
Cong
S.
A Result on Almost Sure Stability of Linear Continuous-Time Markovian Switching Systems.
IEEE Trans Automat Contr,
2018, 63: 2226-2233
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Result on Almost Sure Stability of Linear Continuous-Time Markovian Switching Systems&author=Cong S&publication_year=2018&journal=IEEE Trans Automat Contr&volume=63&pages=2226-2233
[2]
Chatterjee
D,
Liberzon
D.
Stabilizing Randomly Switched Systems.
SIAM J Control Optim,
2011, 49: 2008-2031
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stabilizing Randomly Switched Systems&author=Chatterjee D&author=Liberzon D&publication_year=2011&journal=SIAM J Control Optim&volume=49&pages=2008-2031
[3]
Wang
B,
Zhu
Q.
Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems.
Syst Control Lett,
2017, 105: 55-61
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems&author=Wang B&author=Zhu Q&publication_year=2017&journal=Syst Control Lett&volume=105&pages=55-61
[4]
Wang
B,
Zhu
Q.
Stability analysis of semi-Markov switched stochastic systems.
Automatica,
2018, 94: 72-80
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability analysis of semi-Markov switched stochastic systems&author=Wang B&author=Zhu Q&publication_year=2018&journal=Automatica&volume=94&pages=72-80
[5]
Wang
B,
Zhu
Q.
A Note on Sufficient Conditions of Almost Sure Exponential Stability for Semi-Markovian Jump Stochastic Systems.
IEEE Access,
2019, 7: 49466-49473
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Note on Sufficient Conditions of Almost Sure Exponential Stability for Semi-Markovian Jump Stochastic Systems&author=Wang B&author=Zhu Q&publication_year=2019&journal=IEEE Access&volume=7&pages=49466-49473
[6]
Wu
X,
Tang
Y,
Cao
J.
Stability Analysis for Continuous-Time Switched Systems With Stochastic Switching Signals.
IEEE Trans Automat Contr,
2018, 63: 3083-3090
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability Analysis for Continuous-Time Switched Systems With Stochastic Switching Signals&author=Wu X&author=Tang Y&author=Cao J&publication_year=2018&journal=IEEE Trans Automat Contr&volume=63&pages=3083-3090
[7]
Hespanha J P, Teel A R. Stochastic Impulsive Systems Driven by Renewal Processes: Extended Version. Technical Report, University of California, Santa Barbara, 2005. http://www.ece.ucsb.edu/hespanha/techreps.html.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hespanha J P, Teel A R. Stochastic Impulsive Systems Driven by Renewal Processes: Extended Version. Technical Report, University of California, Santa Barbara, 2005. http://www.ece.ucsb.edu/hespanha/techreps.html&
[8]
Hu
Z,
Yang
Z,
Mu
X.
Stochastic input-to-state stability of random impulsive nonlinear systems.
J Franklin Institute,
2019, 356: 3030-3044
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stochastic input-to-state stability of random impulsive nonlinear systems&author=Hu Z&author=Yang Z&author=Mu X&publication_year=2019&journal=J Franklin Institute&volume=356&pages=3030-3044
[9]
Shen
Y,
Wu
Z G,
Shi
P.
Dissipativity based fault detection for 2D Markov jump systems with asynchronous modes.
Automatica,
2019, 106: 8-17
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dissipativity based fault detection for 2D Markov jump systems with asynchronous modes&author=Shen Y&author=Wu Z G&author=Shi P&publication_year=2019&journal=Automatica&volume=106&pages=8-17
[10]
Wu
Z G,
Dong
S,
Shi
P.
Reliable Filter Design of Takagi-Sugeno Fuzzy Switched Systems With Imprecise Modes..
IEEE Trans Cybern,
2019, : 1-11
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Reliable Filter Design of Takagi-Sugeno Fuzzy Switched Systems With Imprecise Modes.&author=Wu Z G&author=Dong S&author=Shi P&publication_year=2019&journal=IEEE Trans Cybern&pages=1-11
[11]
Cassandras C G, Lygeros J. Stochastic hybrid systems: research issues and areas. In: Stochastic Hybrid Systems. Boca Raton: CRC Press, 2007. 1--14.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cassandras C G, Lygeros J. Stochastic hybrid systems: research issues and areas. In: Stochastic Hybrid Systems. Boca Raton: CRC Press, 2007. 1--14&
[12]
Liu
K,
Fridman
E,
Johansson
K H.
Networked Control With Stochastic Scheduling.
IEEE Trans Automat Contr,
2015, 60: 3071-3076
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Networked Control With Stochastic Scheduling&author=Liu K&author=Fridman E&author=Johansson K H&publication_year=2015&journal=IEEE Trans Automat Contr&volume=60&pages=3071-3076
[13]
Teel
A R,
Subbaraman
A,
Sferlazza
A.
Stability analysis for stochastic hybrid systems: A survey.
Automatica,
2014, 50: 2435-2456
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability analysis for stochastic hybrid systems: A survey&author=Teel A R&author=Subbaraman A&author=Sferlazza A&publication_year=2014&journal=Automatica&volume=50&pages=2435-2456
[14]
Guan
Z H,
Hill
D J,
Yao
J.
A HYBRID IMPULSIVE AND SWITCHING CONTROL STRATEGY FOR SYNCHRONIZATION OF NONLINEAR SYSTEMS AND APPLICATION TO CHUA'S CHAOTIC CIRCUIT.
Int J Bifurcation Chaos,
2006, 16: 229-238
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A HYBRID IMPULSIVE AND SWITCHING CONTROL STRATEGY FOR SYNCHRONIZATION OF NONLINEAR SYSTEMS AND APPLICATION TO CHUA'S CHAOTIC CIRCUIT&author=Guan Z H&author=Hill D J&author=Yao J&publication_year=2006&journal=Int J Bifurcation Chaos&volume=16&pages=229-238
[15]
Matsuoka
Y,
Saito
T.
Rich Superstable Phenomena in a Piecewise Constant Nonautonomous Circuit with Impulsive Switching.
IEICE Trans Fundamentals Electron Commun Comput Sci,
2006, E89-A: 2767-2774
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rich Superstable Phenomena in a Piecewise Constant Nonautonomous Circuit with Impulsive Switching&author=Matsuoka Y&author=Saito T&publication_year=2006&journal=IEICE Trans Fundamentals Electron Commun Comput Sci&volume=E89-A&pages=2767-2774
[16]
Ren
W,
Xiong
J.
Lyapunov Conditions for Stability of Stochastic Impulsive Switched Systems.
IEEE Trans Circuits Syst I,
2018, 65: 1994-2004
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lyapunov Conditions for Stability of Stochastic Impulsive Switched Systems&author=Ren W&author=Xiong J&publication_year=2018&journal=IEEE Trans Circuits Syst I&volume=65&pages=1994-2004
[17]
Vaidyanathan S, Volos C K, Pham V T. Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. J Eng Sci Technol Rev, 2015, 8: 174--184.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vaidyanathan S, Volos C K, Pham V T. Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. J Eng Sci Technol Rev, 2015, 8: 174--184&
[18]
Li
X,
Li
P,
Wang
Q.
Input/output-to-state stability of impulsive switched systems.
Syst Control Lett,
2018, 116: 1-7
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Input/output-to-state stability of impulsive switched systems&author=Li X&author=Li P&author=Wang Q&publication_year=2018&journal=Syst Control Lett&volume=116&pages=1-7
[19]
Liu
J,
Liu
X,
Xie
W C.
Class- estimates and input-to-state stability analysis of impulsive switched systems.
Syst Control Lett,
2012, 61: 738-746
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Class- estimates and input-to-state stability analysis of impulsive switched systems&author=Liu J&author=Liu X&author=Xie W C&publication_year=2012&journal=Syst Control Lett&volume=61&pages=738-746
[20]
Kobayashi H, Mark B L, Turin W. Probability, Random Processes and Statistical Analysis. New York: Cambridge University Express, 2012.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kobayashi H, Mark B L, Turin W. Probability, Random Processes and Statistical Analysis. New York: Cambridge University Express, 2012&
[21]
Ross S M. Stochastic Processes. Hoboken: John Wiley & Sons Inc., 1996.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ross S M. Stochastic Processes. Hoboken: John Wiley & Sons Inc., 1996&
[22]
Hou
Z,
Dong
H,
Shi
P.
Asymptotic stability in the distribution of nonlinear stochastic systems with semi-Markovian switching.
ANZIAM J,
2007, 49: 231-241
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Asymptotic stability in the distribution of nonlinear stochastic systems with semi-Markovian switching&author=Hou Z&author=Dong H&author=Shi P&publication_year=2007&journal=ANZIAM J&volume=49&pages=231-241
[23]
Zong
G,
Ren
H.
Guaranteed cost finite?time control for semi?Markov jump systems with event?triggered scheme and quantization input.
Int J Robust NOnlinear Control,
2019, 29: 5251-5273
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Guaranteed cost finite?time control for semi?Markov jump systems with event?triggered scheme and quantization input&author=Zong G&author=Ren H&publication_year=2019&journal=Int J Robust NOnlinear Control&volume=29&pages=5251-5273
[24]
Qi
W,
Zong
G,
Karimi
H R.
$\mathscr~{L}_\infty$ Control for Positive Delay Systems With Semi-Markov Process and Application to a Communication Network Model.
IEEE Trans Ind Electron,
2019, 66: 2081-2091
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=$\mathscr~{L}_\infty$ Control for Positive Delay Systems With Semi-Markov Process and Application to a Communication Network Model&author=Qi W&author=Zong G&author=Karimi H R&publication_year=2019&journal=IEEE Trans Ind Electron&volume=66&pages=2081-2091
[25]
Qi
W,
Zong
G,
Karim
H R.
Observer-Based Adaptive SMC for Nonlinear Uncertain Singular Semi-Markov Jump Systems With Applications to DC Motor.
IEEE Trans Circuits Syst I,
2018, 65: 2951-2960
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Observer-Based Adaptive SMC for Nonlinear Uncertain Singular Semi-Markov Jump Systems With Applications to DC Motor&author=Qi W&author=Zong G&author=Karim H R&publication_year=2018&journal=IEEE Trans Circuits Syst I&volume=65&pages=2951-2960
[26]
Huang
J,
Shi
Y.
Stochastic stability and robust stabilization of semi-Markov jump?linear systems.
Int J Robust NOnlinear Control,
2013, 23: 2028-2043
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stochastic stability and robust stabilization of semi-Markov jump?linear systems&author=Huang J&author=Shi Y&publication_year=2013&journal=Int J Robust NOnlinear Control&volume=23&pages=2028-2043
[27]
Ning
Z,
Zhang
L,
Lam
J.
Stability and stabilization of a class of stochastic switching systems with lower bound of sojourn time.
Automatica,
2018, 92: 18-28
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability and stabilization of a class of stochastic switching systems with lower bound of sojourn time&author=Ning Z&author=Zhang L&author=Lam J&publication_year=2018&journal=Automatica&volume=92&pages=18-28
[28]
Sun
W,
Guan
J,
Lu
J.
Synchronization of the Networked System With Continuous and Impulsive Hybrid Communications..
IEEE Trans Neural Netw Learning Syst,
2019, : 1-12
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synchronization of the Networked System With Continuous and Impulsive Hybrid Communications.&author=Sun W&author=Guan J&author=Lu J&publication_year=2019&journal=IEEE Trans Neural Netw Learning Syst&pages=1-12
[29]
Xu
Y,
He
Z.
Stability of impulsive stochastic differential equations with Markovian switching.
Appl Math Lett,
2014, 35: 35-40
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stability of impulsive stochastic differential equations with Markovian switching&author=Xu Y&author=He Z&publication_year=2014&journal=Appl Math Lett&volume=35&pages=35-40
[30]
Prandini
M,
Jianghai Hu
M.
Application of Reachability Analysis for Stochastic Hybrid Systems to Aircraft Conflict Prediction.
IEEE Trans Automat Contr,
2009, 54: 913-917
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Application of Reachability Analysis for Stochastic Hybrid Systems to Aircraft Conflict Prediction&author=Prandini M&author=Jianghai Hu M&publication_year=2009&journal=IEEE Trans Automat Contr&volume=54&pages=913-917
[31]
Luo
S,
Deng
F,
Zhao
X.
Stochastic stabilization using aperiodically sampled measurements.
Sci China Inf Sci,
2019, 62: 192201
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stochastic stabilization using aperiodically sampled measurements&author=Luo S&author=Deng F&author=Zhao X&publication_year=2019&journal=Sci China Inf Sci&volume=62&pages=192201
[32]
Qi
W,
Zong
G,
Karimi
H R.
Sliding Mode Control for Nonlinear Stochastic Singular Semi-Markov Jump Systems.
IEEE Trans Automat Contr,
2020, 65: 361-368
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sliding Mode Control for Nonlinear Stochastic Singular Semi-Markov Jump Systems&author=Qi W&author=Zong G&author=Karimi H R&publication_year=2020&journal=IEEE Trans Automat Contr&volume=65&pages=361-368
[33]
Zhang
S,
Xiong
J,
Liu
X.
Stochastic maximum principle for partially observed forward-backward stochastic differential equations with jumps and regime switching.
Sci China Inf Sci,
2018, 61: 070211
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stochastic maximum principle for partially observed forward-backward stochastic differential equations with jumps and regime switching&author=Zhang S&author=Xiong J&author=Liu X&publication_year=2018&journal=Sci China Inf Sci&volume=61&pages=070211
[34]
Wu
S J,
Zhou
B.
Existence and uniqueness of stochastic differential equations with random impulses and Markovian switching under non-lipschitz conditions.
Acta Math Sin-Engl Ser,
2011, 27: 519-536
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Existence and uniqueness of stochastic differential equations with random impulses and Markovian switching under non-lipschitz conditions&author=Wu S J&author=Zhou B&publication_year=2011&journal=Acta Math Sin-Engl Ser&volume=27&pages=519-536
[35]
Mao X R, Yuan C. Stochastic Differential Equations With Markovian Switching. London: Imperial College Press, 2006.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mao X R, Yuan C. Stochastic Differential Equations With Markovian Switching. London: Imperial College Press, 2006&
[36]
Deng
F,
Luo
Q,
Mao
X.
Stochastic stabilization of hybrid differential equations.
Automatica,
2012, 48: 2321-2328
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stochastic stabilization of hybrid differential equations&author=Deng F&author=Luo Q&author=Mao X&publication_year=2012&journal=Automatica&volume=48&pages=2321-2328
[37]
Pardoux E. Markov Processes and Applications. Hoboken: John Wiley & Sons Inc., 2008.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pardoux E. Markov Processes and Applications. Hoboken: John Wiley & Sons Inc., 2008&