logo

SCIENCE CHINA Information Sciences, Volume 64 , Issue 3 : 132203(2021) https://doi.org/10.1007/s11432-019-2735-6

Tracking control of redundant manipulator under active remote center-of-motion constraints: an RNN-based metaheuristic approach

More info
  • ReceivedJul 25, 2019
  • AcceptedDec 2, 2019
  • PublishedFeb 5, 2021

Abstract


References

[1] Yang C, Jiang Y, Li Z. Neural Control of Bimanual Robots With Guaranteed Global Stability and Motion Precision. IEEE Trans Ind Inf, 2017, 13: 1162-1171 CrossRef Google Scholar

[2] Liu Y J, Tong S. Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input.. IEEE Trans Cybern, 2015, 45: 497-505 CrossRef PubMed Google Scholar

[3] Hu G, Gans N, Fitz-Coy N. Adaptive Homography-Based Visual Servo Tracking Control via a Quaternion Formulation. IEEE Trans Contr Syst Technol, 2010, 18: 128-135 CrossRef Google Scholar

[4] Yang C, Zeng C, Cong Y. A Learning Framework of Adaptive Manipulative Skills From Human to Robot. IEEE Trans Ind Inf, 2019, 15: 1153-1161 CrossRef Google Scholar

[5] La H M, Dinh T H, Pham N H. Automated robotic monitoring and inspection of steel structures and bridges. Robotica, 2019, 37: 947-967 CrossRef Google Scholar

[6] Yang C, Peng G, Cheng L. Force Sensorless Admittance Control for Teleoperation of Uncertain Robot Manipulator Using Neural Networks. IEEE Trans Syst Man Cybern Syst, 2019, : 1-11 CrossRef Google Scholar

[7] Kim U, Lee D H, Kim Y B. S-Surge: Novel Portable Surgical Robot with Multiaxis Force-Sensing Capability for Minimally Invasive Surgery. IEEE/ASME Trans Mechatron, 2017, 22: 1717-1727 CrossRef Google Scholar

[8] Aghakhani N, Geravand M, Shahriari N, Vendittelli M, and Oriolo G. Task control with remote center of motion constraint for minimally invasive robotic surgery. In: Proceedings of 2013 IEEE International Conference on Robotics and Automation, 2013. 5807--5812. Google Scholar

[9] Kuo C H, Dai J S. Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery. J Med Devices, 2012, 6: 021008 CrossRef Google Scholar

[10] Jin L, Li S, Luo X. Neural Dynamics for Cooperative Control of Redundant Robot Manipulators. IEEE Trans Ind Inf, 2018, 14: 3812-3821 CrossRef Google Scholar

[11] La H M, Sheng W. Multi-Agent Motion Control in Cluttered and Noisy Environments. JCM, 2013, 8: 32-46 CrossRef Google Scholar

[12] La H M. Multi-robot swarm for cooperative scalar field mapping. In: Proceedings of Handbook of Research on Design, Control, and Modeling of Swarm Robotics, 2016. 383--395. Google Scholar

[13] La H M, Lim R, Sheng W. Multirobot Cooperative Learning for Predator Avoidance. IEEE Trans Contr Syst Technol, 2015, 23: 52-63 CrossRef Google Scholar

[14] Khan A H, Li S, Luo X. Obstacle Avoidance and Tracking Control of Redundant Robotic Manipulator: An RNN based Metaheuristic Approach. IEEE Trans Ind Inf, 2019, : 1-1 CrossRef Google Scholar

[15] Guo D, Zhang Y. Acceleration-Level Inequality-Based MAN Scheme for Obstacle Avoidance of Redundant Robot Manipulators. IEEE Trans Ind Electron, 2014, 61: 6903-6914 CrossRef Google Scholar

[16] Tevatia G, Schaal S. Inverse kinematics for humanoid robots. In: Proceedings of IEEE International Conference on Robotics and Automation Symposia Proceedings, 2000. 294--299. Google Scholar

[17] Chen G, Wang J, Wang H. A New Type of Planar Two Degree-of-Freedom Remote Center-of-Motion Mechanism Inspired by the Peaucellier-Lipkin Straight-Line Linkage. J Mech Des, 2019, 141: 015001 CrossRef Google Scholar

[18] Nisar S, Endo T, Matsuno F. Design and optimization of a 2-degree-of-freedom planar remote center of motion mechanism for surgical manipulators with smaller footprint. Mechanism Machine Theor, 2018, 129: 148-161 CrossRef Google Scholar

[19] Ortmaier T, Hirzinger G. Cartesian control issues for minimally invasive robot surgery. In: Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000. 565--571. Google Scholar

[20] Sandoval J, Poisson G, Vieyres P. A new kinematic formulation of the rcm constraint for redundant torque-controlled robots. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017. 4576--4581. Google Scholar

[21] Sandoval J, Poisson G, Vieyres P. Improved dynamic formulation for decoupled cartesian admittance control and rcm constraint. In: Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016. 1124--1129. Google Scholar

[22] Yang D, Wang L, Xie Y, et al. Optimization-based inverse kinematic analysis of an experimental minimally invasive robotic surgery system. In: Proceedings of 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2015. 1427--1432. Google Scholar

[23] Su H, Shuai L, Jagadesh M, et al. Manipulability optimization control of a serial redundant robot for robot-assisted minimally invasive surgery. In: Proceedings of IEEE International Conference on Robotics and Automation, 2019. 1--6. Google Scholar

[24] Lai W, Cao L, Xu Z, et al. Distal end force sensing with optical fiber bragg gratings for tendon-sheath mechanisms in flexible endoscopic robots. In: Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018. 1--5. Google Scholar

[25] Bruno D, Calinon S, Caldwell D G. Learning autonomous behaviours for the body of a flexible surgical robot. Auton Robot, 2017, 41: 333-347 CrossRef Google Scholar

[26] Calinon S, Bruno D, Malekzadeh M S. Human-robot skills transfer interfaces for a flexible surgical robot.. Comput Methods Programs Biomed, 2014, 116: 81-96 CrossRef PubMed Google Scholar

[27] Xu K, Simaan N. Actuation compensation for flexible surgical snake-like robots with redundant remote actuation. In: Proceedings of IEEE International Conference on Robotics and Automation, 2006. 4148--4154. Google Scholar

[28] Li S, Chen S, Liu B. Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing, 2012, 91: 1-10 CrossRef Google Scholar

[29] Jin L, Li S, La H M. Manipulability Optimization of Redundant Manipulators Using Dynamic Neural Networks. IEEE Trans Ind Electron, 2017, 64: 4710-4720 CrossRef Google Scholar

[30] Yang C, Wu H, Li Z. Mind Control of a Robotic Arm With Visual Fusion Technology. IEEE Trans Ind Inf, 2018, 14: 3822-3830 CrossRef Google Scholar

[31] He W, Huang H, Ge S S. Adaptive Neural Network Control of a Robotic Manipulator With Time-Varying Output Constraints.. IEEE Trans Cybern, 2017, 47: 3136-3147 CrossRef PubMed Google Scholar

[32] Wang H, Chen B, Lin C. Adaptive neural tracking control for a class of stochastic nonlinear systems. Int J Robust NOnlinear Control, 2014, 24: 1262-1280 CrossRef Google Scholar

[33] Xiao L, Li S, Lin F J. Zeroing Neural Dynamics for Control Design: Comprehensive Analysis on Stability, Robustness, and Convergence Speed. IEEE Trans Ind Inf, 2019, 15: 2605-2616 CrossRef Google Scholar

[34] Wang H, Liu X, Liu K. Robust Adaptive Neural Tracking Control for a Class of Stochastic Nonlinear Interconnected Systems.. IEEE Trans Neural Netw Learning Syst, 2016, 27: 510-523 CrossRef PubMed Google Scholar

[35] Jing L, Zhang J. Tracking control and parameter identification with quantized ARMAX systems. Sci China Inf Sci, 2019, 62: 199203 CrossRef Google Scholar

[36] Liao B, Liu W. Pseudoinverse-type bi-criteria minimization scheme for redundancy resolution of robot manipulators. Robotica, 2015, 33: 2100-2113 CrossRef Google Scholar

[37] Jin L, Zhang Y. Discrete-time Zhang neural network of O(τ3) pattern for time-varying matrix pseudoinversion with application to manipulator motion generation. Neurocomputing, 2014, 142: 165-173 CrossRef Google Scholar

[38] Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms. IEEE Trans Syst Man Cybern, 1977, 7: 868-871 CrossRef Google Scholar

[39] Zanchettin A M, Bascetta L, Rocco P. Achieving Humanlike Motion: Resolving Redundancy for Anthropomorphic Industrial Manipulators. IEEE Robot Automat Mag, 2013, 20: 131-138 CrossRef Google Scholar

[40] Cha S H, Lasky T A, Velinsky S A. Kinematic Redundancy Resolution for Serial-Parallel Manipulators via Local Optimization Including Joint Constraints. Mech Based Des Struct Machines, 2006, 34: 213-239 CrossRef Google Scholar

[41] Cavallo A, Russo A, Canciello G. Hierarchical control for generator and battery in the more electric aircraft. Sci China Inf Sci, 2019, 62: 192207 CrossRef Google Scholar

[42] Han Ding , Tso S K. A fully neural-network-based planning scheme for torque minimization of redundant manipulators. IEEE Trans Ind Electron, 1999, 46: 199-206 CrossRef Google Scholar

[43] He W, Yan Z, Sun Y. Neural-Learning-Based Control for a Constrained Robotic Manipulator With Flexible Joints.. IEEE Trans Neural Netw Learning Syst, 2018, 29: 5993-6003 CrossRef PubMed Google Scholar

[44] Wang H, Liu P X, Bao J. Adaptive Neural Output-Feedback Decentralized Control for Large-Scale Nonlinear Systems With Stochastic Disturbances.. IEEE Trans Neural Netw Learning Syst, 2019, : 1-12 CrossRef PubMed Google Scholar

[45] Jing Na , Xuemei Ren , Dongdong Zheng . Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer.. IEEE Trans Neural Netw Learning Syst, 2013, 24: 370-382 CrossRef PubMed Google Scholar

[46] He W, Yin Z, Sun C. Adaptive Neural Network Control of a Marine Vessel With Constraints Using the Asymmetric Barrier Lyapunov Function.. IEEE Trans Cybern, 2017, 47: 1641-1651 CrossRef PubMed Google Scholar

[47] Yang C, Jiang Y, Na J. Finite-Time Convergence Adaptive Fuzzy Control for Dual-Arm Robot With Unknown Kinematics and Dynamics. IEEE Trans Fuzzy Syst, 2019, 27: 574-588 CrossRef Google Scholar

[48] Na J, Jing B, Huang Y. Unknown System Dynamics Estimator for Motion Control of Nonlinear Robotic Systems. IEEE Trans Ind Electron, 2019, : 1-1 CrossRef Google Scholar

[49] Wang H, Xiaoping Liu P, Xie X. Adaptive fuzzy asymptotical tracking control of nonlinear systems with unmodeled dynamics and quantized actuator. Inf Sci, 2018, CrossRef Google Scholar

[50] Yang C, Jiang Y, He W. Adaptive Parameter Estimation and Control Design for Robot Manipulators With Finite-Time Convergence. IEEE Trans Ind Electron, 2018, 65: 8112-8123 CrossRef Google Scholar

[51] Na J, Mahyuddin M N, Herrmann G. Robust adaptive finite-time parameter estimation and control for robotic systems. Int J Robust NOnlinear Control, 2015, 25: 3045-3071 CrossRef Google Scholar

[52] Wang H, Liu P X, Zhao X. Adaptive Fuzzy Finite-Time Control of Nonlinear Systems With Actuator Faults.. IEEE Trans Cybern, 2019, : 1-12 CrossRef PubMed Google Scholar

[53] Li M, Kapoor A, and Taylor R H. A constrained optimization approach to virtual fixtures. In: Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. 1408--1413. Google Scholar

[54] Parejo J A, Ruiz-Cortés A, Lozano S. Metaheuristic optimization frameworks: a survey and benchmarking. Soft Comput, 2012, 16: 527-561 CrossRef Google Scholar

[55] Yang X-S, Engineering Optimization: An Introduction With Metaheuristic Applications. Hoboken: John Wiley & Sons, 2010. Google Scholar

[56] Ren Z, Li P, Fang J. SBA: An Efficient Algorithm for Address Assignment in ZigBee Networks. Wireless Pers Commun, 2013, 71: 719-734 CrossRef Google Scholar

[57] Fang J, Zhang L, Li H. Two-Dimensional Pattern-Coupled Sparse Bayesian Learning via Generalized Approximate Message Passing.. IEEE Trans Image Process, 2016, 25: 2920-2930 CrossRef PubMed Google Scholar

[58] Jun Fang , Hongbin Li . Distributed Estimation of Gauss - Markov Random Fields With One-Bit Quantized Data. IEEE Signal Process Lett, 2010, 17: 449-452 CrossRef Google Scholar

[59] Fang J, Shen Y, Li F, et al. Support knowledge-aided sparse Bayesian learning for compressed sensing. In: Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015. 3786--3790. Google Scholar

[60] Jiang X, Li S. Bas: beetle antennae search algorithm for optimization problems. 2017,. arXiv Google Scholar

[61] Zhang Y, Li S, Xu B. Convergence analysis of beetle antennae search algorithm and its applications. 2019,. arXiv Google Scholar

[62] Zhu Z, Zhang Z, Man W, et al. A new beetle antennae search algorithm for multi-objective energy management in microgrid. In: Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2018. 1599--1603. Google Scholar

[63] Yin X, Ma Y. Aggregation service function chain mapping plan based on beetle antennae search algorithm. In: Proceedings of Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering, 2018. 225--230. Google Scholar

[64] Zhang Y, Li S, Zou J. A Passivity-Based Approach for Kinematic Control of Redundant Manipulators with Constraints. IEEE Trans Ind Inf, 2019, : 1-1 CrossRef Google Scholar

[65] Chen D, Zhang Y, Li S. Tracking Control of Robot Manipulators with Unknown Models: A Jacobian-Matrix-Adaption Method. IEEE Trans Ind Inf, 2018, 14: 3044-3053 CrossRef Google Scholar

[66] Wu G. Kinematic Analysis and Optimal Design of a Wall-mounted Four-limb Parallel Sch?nflies-motion Robot for Pick-and-place Operations. J Intell Robot Syst, 2017, 85: 663-677 CrossRef Google Scholar

[67] Al-Naimi I, Taeim A, and Alajdah N. Fully-automated parallel-kinematic robot for multitask industrial operations. In: Proceedings of 2018 15th International Multi-Conference on Systems, Signals & Devices, 2018. 390--395. Google Scholar

[68] Menon A, Prakash R, Behera L. Adaptive critic based optimal kinematic control for a robot manipulator. In: Proceedings of International Conference on Robotics and Automation (ICRA), 2019. 1316--1322. Google Scholar

[69] Corke P I. A robotics toolbox for MATLAB. IEEE Robot Automat Mag, 1996, 3: 24-32 CrossRef Google Scholar

  • Figure 1

    (Color online) Illustration of a surgical robot with a surgical tip at its end-effector. The surgical tip passes through the point of incision on the patient's body.