logo

SCIENCE CHINA Information Sciences, Volume 63 , Issue 2 : 120114(2020) https://doi.org/10.1007/s11432-019-2747-y

Leveraging 3D blendshape for facial expression recognition using CNN

More info
  • ReceivedOct 1, 2019
  • AcceptedDec 13, 2019
  • PublishedJan 16, 2020

Abstract

There is no abstract available for this article.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61572078, 61473276) and Beijing Natural Science Foundation (Grant No. L182052).


Supplement

Appendixes A–C.


References

[1] Li S, Deng W. Deep facial expression recognition: a survey. 2018,. arXiv Google Scholar

[2] Rahulamathavan Y, Phan R C W, Chambers J A. Facial Expression Recognition in the Encrypted Domain Based on Local Fisher Discriminant Analysis. IEEE Trans Affective Comput, 2013, 4: 83-92 CrossRef Google Scholar

[3] Ding H, Zhou S K, Chellappa R. Facenet2expnet: regularizing a deep face recognition net for expression recognition. In: Proceedings of the 12th IEEE International Conference on Automatic Face & Gesture Recognition, 2017. 118--126. Google Scholar

[4] Yang H, Ciftci U, Yin L. Facial expression recognition by de-expression residue learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. 2168--2177. Google Scholar

[5] Zhang K, Huang Y, Du Y. Facial Expression Recognition Based on Deep Evolutional Spatial-Temporal Networks.. IEEE Trans Image Process, 2017, 26: 4193-4203 CrossRef PubMed Google Scholar

[6] Acharya D, Huang Z, Pani Paudel D, et al. Covariance pooling for facial expression recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018. 367--374. Google Scholar

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号