logo

SCIENCE CHINA Information Sciences, Volume 63 , Issue 8 : 182401(2020) https://doi.org/10.1007/s11432-019-2753-3

Multi-wavelength colloidal quantum dot lasers in distributed feedback cavities

More info
  • ReceivedOct 16, 2019
  • AcceptedDec 30, 2019
  • PublishedApr 30, 2020

Abstract

Lasers with multi-wavelength colloidal quantum dots (CQDs) can be achieved using complex grating structures and flexible substrate. The structure contains graduated periods and rectangular cavity fabricated through interference lithography, which acts as the distributed feedback cavity. A layer of densely packed CQD film is deposited on the cavity via spin coating technique. The performance of CQD lasers based on different distributed feedback cavities is investigated. Multi-wavelength lasing is achieved based on a flexible rectangular cavity.


Acknowledgment

This work was supported by National Natural Science Foundation of China (Grant Nos. 61822501, 11574015) and Beijing Natural Science Foundation (Grant No. Z180015).


References

[1] Gardner K, Aghajamali M, Vagin S. Ultrabright Fluorescent and Lasing Microspheres from a Conjugated Polymer. Adv Funct Mater, 2018, 28: 1802759 CrossRef Google Scholar

[2] Mathies F, Brenner P, Hernandez-Sosa G. Inkjet-printed perovskite distributed feedback lasers. Opt Express, 2018, 26: A144 CrossRef PubMed ADS Google Scholar

[3] Tsutsumi N, Hinode T. Tunable organic distributed feedback dye laser device excited through F?rster mechanism. Appl Phys B, 2017, 123: 93 CrossRef ADS Google Scholar

[4] Samuel I D W, Turnbull G A. Organic semiconductor lasers.. Chem Rev, 2007, 107: 1272-1295 CrossRef PubMed Google Scholar

[5] Cai S, Han Z, Wang F. Review on flexible photonics/electronics integrated devices and fabrication strategy. Sci China Inf Sci, 2018, 61: 060410 CrossRef Google Scholar

[6] Murray C B, Kagan C R, Bawendi M G. Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies. Annu Rev Mater Sci, 2000, 30: 545-610 CrossRef ADS Google Scholar

[7] Kagan C R, Lifshitz E, Sargent E H. Building devices from colloidal quantum dots.. Science, 2016, 353: aac5523-aac5523 CrossRef PubMed Google Scholar

[8] Alivisatos A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 1996, 271: 933-937 CrossRef ADS Google Scholar

[9] Chen O, Zhao J, Chauhan V P. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater, 2013, 12: 445-451 CrossRef PubMed ADS Google Scholar

[10] Guzelturk B, Kelestemur Y, Gungor K. Stable and Low-Threshold Optical Gain in CdSe/CdS Quantum Dots: An All-Colloidal Frequency Up-Converted Laser.. Adv Mater, 2015, 27: 2741-2746 CrossRef PubMed Google Scholar

[11] Snee P T, Chan Y, Nocera D G. Whispering-Gallery-Mode Lasing from a Semiconductor Nanocrystal/Microsphere Resonator Composite. Adv Mater, 2005, 17: 1131-1136 CrossRef Google Scholar

[12] Eisler H J, Sundar V C, Bawendi M G. Color-selective semiconductor nanocrystal laser. Appl Phys Lett, 2002, 80: 4614-4616 CrossRef ADS Google Scholar

[13] Wang Y, Fong K E, Yang S. Unraveling the ultralow threshold stimulated emission from CdZnS/ZnS quantum dot and enabling high-Q microlasers. Laser Photonics Rev, 2015, 9: 507-516 CrossRef ADS Google Scholar

[14] Heo J, Jiang Z, Xu J. Coherent and directional emission at 1.55 μm from PbSe colloidal quantum dot electroluminescent device on silicon.. Opt Express, 2011, 19: 26394-26398 CrossRef PubMed ADS Google Scholar

[15] Park Y S, Bae W K, Baker T. Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces. Nano Lett, 2015, 15: 7319-7328 CrossRef PubMed ADS Google Scholar

[16] Klimov V I, Ivanov S A, Nanda J. Single-exciton optical gain in semiconductor nanocrystals. Nature, 2007, 447: 441-446 CrossRef PubMed ADS Google Scholar

[17] Zavelani-Rossi M, Lupo M G, Tassone F. Suppression of Biexciton Auger Recombination in CdSe/CdS Dot/Rods: Role of the Electronic Structure in the Carrier Dynamics. Nano Lett, 2010, 10: 3142-3150 CrossRef PubMed ADS Google Scholar

[18] Bae W K, Padilha L A, Park Y S. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination.. ACS Nano, 2013, 7: 3411-3419 CrossRef PubMed Google Scholar

[19] Grim J Q, Christodoulou S, Di Stasio F. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat Nanotech, 2014, 9: 891-895 CrossRef PubMed ADS Google Scholar

[20] Wang Y, Ta V D, Leck K S. Robust Whispering-Gallery-Mode Microbubble Lasers from Colloidal Quantum Dots. Nano Lett, 2017, 17: 2640-2646 CrossRef PubMed ADS Google Scholar

[21] le Feber B, Prins F, De Leo E. Colloidal-Quantum-Dot Ring Lasers with Active Color Control. Nano Lett, 2018, 18: 1028-1034 CrossRef PubMed ADS Google Scholar

[22] Rong K, Sun C, Shi K. Room-Temperature Planar Lasers Based on Water-Dripping Microplates of Colloidal Quantum Dots. ACS Photonics, 2017, 4: 1776-1784 CrossRef Google Scholar

[23] Dang C, Lee J, Roh K. Highly efficient, spatially coherent distributed feedback lasers from dense colloidal quantum dot films. Appl Phys Lett, 2013, 103: 171104 CrossRef ADS Google Scholar

[24] Roh K, Dang C, Lee J. Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers. Opt Express, 2014, 22: 18800-18806 CrossRef PubMed ADS Google Scholar

[25] Han C, Jung H, Lee J. Wet-Transfer of Freestanding Dense Colloidal Quantum Dot Films and Their Photonic Device Application. Adv Mater Technol, 2018, 3: 1700291 CrossRef Google Scholar

[26] Wang Y, Ta V D, Gao Y. Stimulated emission and lasing from CdSe/CdS/ZnS core-multi-shell quantum dots by simultaneous three-photon absorption.. Adv Mater, 2014, 26: 2954-2961 CrossRef PubMed Google Scholar

[27] Huang Y, Ma X, Yang Y. Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor. Sci China Inf Sci, 2018, 61: 080401 CrossRef Google Scholar

[28] Li Z, Zhang Z, Scherer A. Mechanically tunable optofluidic distributed feedback dye laser. Opt Express, 2006, 14: 10494-10499 CrossRef PubMed ADS Google Scholar

[29] Stroisch M, Woggon T, Teiwes-Morin C. Intermediate high index layer for laser mode tuning in organic semiconductor lasers. Opt Express, 2010, 18: 5890-5895 CrossRef PubMed ADS Google Scholar

[30] Camposeo A, Del Carro P, Persano L. Electrically tunable organic distributed feedback lasers embedding nonlinear optical molecules.. Adv Mater, 2012, 24: OP221-OP225 CrossRef PubMed Google Scholar

[31] Zhai T, Wang Y, Chen L. Direct writing of tunable multi-wavelength polymer lasers on a flexible substrate. Nanoscale, 2015, 7: 12312-12317 CrossRef PubMed ADS Google Scholar

[32] Zhai T, Tong F, Wang Y. Polymer lasers assembled by suspending membranes on a distributed feedback grating. Opt Express, 2016, 24: 22028 CrossRef PubMed ADS Google Scholar

[33] Gao Y, Huang C, Hao C. Lead Halide Perovskite Nanostructures for Dynamic Color Display. ACS Nano, 2018, 12: 8847-8854 CrossRef Google Scholar

[34] Rong K, Gan F, Shi K. Configurable Integration of On-Chip Quantum Dot Lasers and Subwavelength Plasmonic Waveguides.. Adv Mater, 2018, 30: 1706546 CrossRef PubMed Google Scholar

[35] Klimov V I. Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Annu Rev Phys Chem, 2007, 58: 635-673 CrossRef ADS Google Scholar

[36] Lee D U, Kim D H, Choi D H. Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots. Opt Express, 2016, 24: A350 CrossRef PubMed ADS Google Scholar

[37] Tang B, Dong H, Sun L. Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres. ACS Nano, 2017, 11: 10681-10688 CrossRef Google Scholar

[38] Chen C, Tong F, Cao F. Tunable polymer lasers based on metal-dielectric hybrid cavity. Opt Express, 2018, 26: 32048 CrossRef PubMed ADS Google Scholar

[39] Cao F, Niu L, Tong J. Hybrid lasing in a plasmonic cavity. Opt Express, 2018, 26: 13383-13389 CrossRef PubMed ADS Google Scholar

[40] Riechel S, Kallinger C, Lemmer U. A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure. Appl Phys Lett, 2000, 77: 2310-2312 CrossRef ADS Google Scholar

[41] Heliotis G, Xia R, Turnbull G A. Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One- and Two-Dimensional Distributed Feedback. Adv Funct Mater, 2004, 14: 91-97 CrossRef Google Scholar

[42] Foucher C, Guilhabert B, Laurand N. Wavelength-tunable colloidal quantum dot laser on ultra-thin flexible glass. Appl Phys Lett, 2014, 104: 141108 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) (a) Schematic of the CQD laser. (b) and (c) Photographs of the flexible CQD lasers. (d) SEM image of a rectangular cavity.

  • Figure 2

    (Color online) Optical characterization of CQD film. (a) Absorption (black line) and PL (red line) spectra; protectłinebreak (b) extinction spectra of 1D CQD laser with different grating periods; (c) electric field distribution of the 621 nm mode of the cavity.

  • Figure 3

    (Color online) Measured spectra of 1D CQD lasers with different grating periods. (a) 395 nm, (b) 400 nm, and (c) 405 nm; (d) variations of CQD laser emission wavelength with changing grating periods; (e) lasing emission intensities as function of pump fluences; (f) photographs of the laser spot of CQD lasers with different grating periods; (g) schematic diagram for measuring divergence angle.

  • Figure 4

    (Color online) Emission spectra of CQD lasers based on the rectangular cavity. (a) Cavity 1 ($\Lambda_1$ = 402 nm and $\Lambda_2$ = 405 nm); (b) cavity 2 ($\Lambda_1$ = 402 nm and $\Lambda_3$ = 408 nm); (c) cavity 3 ($\Lambda_2$ = 405 nm and $\Lambda_3$ = 408 nm); protectłinebreak (d)–(f) thresholds (log-log plot) of the respective 2D CQD lasers.

  • Figure 5

    (Color online) (a) Schematic of CQD lasers on PET substrate; (b) measured emission spectra as a function of wavelength during bending process, without bending (black line), bend upward direction (red line), and bend downward direction (blue line); (c) bending directions; (d) emission wavelength as a function of the vertical displacement of the micrometer.

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号